Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fisher Equilibrium Price with a Class of Concave Utility Functions

  • Conference paper
Algorithms – ESA 2004 (ESA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Included in the following conference series:

Abstract

In this paper we study efficient algorithms for computing equilibrium price in the Fisher model for a class of nonlinear concave utility functions, the logarithmic utility functions. We derive a duality relation between buyers and sellers under such utility functions, and use it to design a polynomial time algorithm for calculating equilibrium price, for the special case when either the number of sellers or the number of buyers is bounded by a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arrow, K.K., Debreu, G.: Existence of An Equilibrium for a Competitive Economy. Econometrica 22, 265–290 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  2. Codenotti, B., Varadarajan, K.: Efficient Computation of Equilibrium Prices for Market with Leontief Utilities. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 371–382. Springer, Heidelberg (2004) (to appear)

    Chapter  Google Scholar 

  3. Deng, X., Papadimitriou, C.H., Safra, S.: On the Complexity of Equilibria, STOC 2002, 67-71. Journal version: Xiaotie Deng, C. H. Papadimitriou, S. Safra. On the Complexity of Price Equilibrium, Journal of Computer and System Sciences 67(2), 311–324 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Devanur, N., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market Equilibrium via a Primal-Dual-Type Algorithm. In: FOCS 2002, pp. 389–395 (2002)

    Google Scholar 

  5. Devanur, N., Vazirani, V.: An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 149–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Devanur, N., Vazirani, V.: The Spending Constraint Model for Market Equilibrium: Algorithmic, Existence and Uniqueness Results. In: STOC 2004 (2004)

    Google Scholar 

  7. Gale, D.: The Theory of Linear Economic Models. McGraw Hill, N.Y. (1960)

    Google Scholar 

  8. Jain, K., Mahdian, M., Saberi, A.: Approximating Market Equilibria. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)

    Google Scholar 

  9. Kapoor, S., Garg, R.: Auction Algorithms for Market Equilibrium. In: STOC 2004 (2004)

    Google Scholar 

  10. Polyak, B.T.: Introduction to Optimization. Opt. Software Inc. (1987)

    Google Scholar 

  11. Scarf, H.E.: The Computation of Economic Equilibria (with collaboration of T. Hansen), Cowles Foundation Monograph No. 24, Yale University Press (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, N., Deng, X., Sun, X., Yao, A.CC. (2004). Fisher Equilibrium Price with a Class of Concave Utility Functions. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics