Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameterized Graph Separation Problems

  • Conference paper
Parameterized and Exact Computation (IWPEC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3162))

Included in the following conference series:

Abstract

We consider parameterized problems where some separation property has to be achieved by deleting as few vertices as possible. The following five problems are studied: delete k vertices such that (a) each of the given ℓ terminals is separated from the others, (b) each of the given ℓ pairs of terminals are separated, (c) exactly ℓ vertices are cut away from the graph, (d) exactly ℓ connected vertices are cut away from the graph, (e) the graph is separated into ℓ components, We show that if both k and ℓ are parameters, then (a), (b) and (d) are fixed-parameter tractable, while (c) and (e) are W[1]-hard.

Research is supported in part by grants OTKA 44733, 42559 and 42706 of the Hungarian National Science Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inform. Process. Lett. 42(3), 153–159 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cunningham, W.H.: The optimal multiterminal cut problem. In: Reliability of computer and communication networks (New Brunswick, NJ, 1989). DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 5, pp. 105–120. Amer. Math. Soc., Providence (1991)

    Google Scholar 

  4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R., Estivill-Castro, V., Fellows, M., Prieto, E., Rosamund, F.: Cutting up is hard to do. In: Harland, J. (ed.) Electronic Notes in Theoretical Computer Science, vol. 78, Elsevier, Amsterdam (2003)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  7. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. J. Algorithms 50(1), 49–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marx, D. (2004). Parameterized Graph Separation Problems. In: Downey, R., Fellows, M., Dehne, F. (eds) Parameterized and Exact Computation. IWPEC 2004. Lecture Notes in Computer Science, vol 3162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28639-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28639-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23071-7

  • Online ISBN: 978-3-540-28639-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics