Nothing Special   »   [go: up one dir, main page]

Skip to main content

Co-retrieval: A Boosted Reranking Approach for Video Retrieval

  • Conference paper
Image and Video Retrieval (CIVR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3115))

Included in the following conference series:

Abstract

Video retrieval compares multimedia queries to a video collection in multiple dimensions and combines all the retrieval scores into a final ranking. Although text are the most reliable feature for video retrieval, features from other modalities can provide complementary information. This paper presents a reranking framework for video retrieval to augment retrieval based on text features with other evidence. We also propose a boosted reranking algorithm called Co-Retrieval, which combines a boosting type algorithm and a noisy label prediction scheme to automatically select the most useful weak hypotheses for different queries. The proposed approach is evaluated with queries and video from the 65-hour test collection of the 2003 NIST TRECVID evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. TREC Video Track, http://www-nlpir.nist.gov/projects/tv2003/tv2003.html

  2. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. In: Proc. of ICML 1998, pp. 170–178 (1998)

    Google Scholar 

  3. Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, adaboost and breg-man distances. In: COLT, pp. 158–169 (2000)

    Google Scholar 

  4. Collins, M.: Discriminative reranking for natural language parsing. In: Proc. 17th Intl. Conf. on Machine Learning, pp. 175–182 (2000)

    Google Scholar 

  5. Tieu, K., Viola, P.: Boosting image retrieval. In: Intl. Conf. on Computer Vision, pp. 228–235 (2001)

    Google Scholar 

  6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT (1998)

    Google Scholar 

  7. Hauptmann, A.G., et al.: Informedia at trecvid 2003: Analyzing and searching broadcast news video. In: Proc. of (VIDEO) TREC 2003, Gaithersburg, MD (2003)

    Google Scholar 

  8. Yan, R., Hauptmann, A.G.: The combination limit of multimedia retrieval. In: Proc. of ACM Multimedia 2003 (2003)

    Google Scholar 

  9. Ratsch, G., Onoda, T., Muller, K.-R.: Soft margins for AdaBoost. Machine Learning 42(3), 287–320 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, R., Hauptmann, A.G. (2004). Co-retrieval: A Boosted Reranking Approach for Video Retrieval. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds) Image and Video Retrieval. CIVR 2004. Lecture Notes in Computer Science, vol 3115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27814-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27814-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22539-3

  • Online ISBN: 978-3-540-27814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics