Abstract
Process algebras aim at defining algebraic calculi for concurrency and communication between concurrent processes. This paper describes some of the issues that would seem to be worth discussing when process algebraic ideas are related to Petri net theoretical concepts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aceto, L., Fokkink, W.J., Verhoef, C.: Structured operational semantics. In: [4], pp. 197–292
Baeten, J.C.M., Middelburg, C.A.: Process algebra with timing: Real time and discrete time. In: [4], pp. 627–684
Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier Science B.V., Amsterdam (2001)
Best, E.: Semantics of Sequential and Parallel Programs. Prentice-Hall, Englewood Cliffs (1996)
Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (2001)
Boudol, G., Castellani, I.: Flow models of distributed computations: Three equivalent semantics for CCS. Information and Computation 114(2), 247–314 (1994)
Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Symposium on Operating Systems, pp. 89–102 (1974)
Castellani, I.: Process algebras with localities. In: [4], pp. 945–1045
Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)
Degano, P., De Nicola, R., Montanari, U.: A partial ordering semantics for CCS. Theoretical Computer Science 75(3), 223–262 (1990)
Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23, 151–195 (1994)
van Glabbeek, R.: The linear time – branching time spectrum I. In: [4], pp. 3–99
van Glabbeek, R., Goltz, U.: Refinement of actions in causality based models. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 267–300. Springer, Heidelberg (1990)
van Glabbeek, R., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)
Goltz, U.: Über die Darstellung von CCS-Programmen durch Petrinetze. Dissertation, Gesellschaft für Mathematik und Datenverarbeitung (1988)
Hoare, C.A.R.: Communicating sequential processes. Comm. of the ACM 21, 666–677 (1978)
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems – the COSY Approach. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1992)
Keller, R.: Formal verification of parallel programs. Comm. of the ACM 19, 371–384 (1976)
Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Informatica 40, 95–118 (2003)
Klaudel, H., Pommereau, F.: M-nets: a survey (2003)(manuscript) (submitted)
Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Olderog, E.R.: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science, vol. 23. Cambridge University Press, Cambridge (1991)
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
Plotkin, G.D.: A structural approach to operational semantics. Report FN-19, Computer Science Department, University of Aarhus (1981)
Priese, L., Wimmel, H.: Petri-Netze. In: Theoretische Informatik. Springer, Heidelberg (2003)
Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and Applied Logic 90(1-3), 163–191 (1997)
Stehno, C.: Real-time systems design with PEP. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 476–480. Springer, Heidelberg (2002)
Taubner, D.A. (ed.): Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)
Winskel, G.: Petri nets, algebras, morphisms and compositionality. Information and Control 72, 197–238 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Best, E., Koutny, M. (2004). Process Algebra. In: Desel, J., Reisig, W., Rozenberg, G. (eds) Lectures on Concurrency and Petri Nets. ACPN 2003. Lecture Notes in Computer Science, vol 3098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27755-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-27755-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22261-3
Online ISBN: 978-3-540-27755-2
eBook Packages: Springer Book Archive