Nothing Special   »   [go: up one dir, main page]

Skip to main content

Process Algebra

A Petri-Net-Oriented Tutorial

  • Chapter
Lectures on Concurrency and Petri Nets (ACPN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3098))

Included in the following conference series:

Abstract

Process algebras aim at defining algebraic calculi for concurrency and communication between concurrent processes. This paper describes some of the issues that would seem to be worth discussing when process algebraic ideas are related to Petri net theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structured operational semantics. In: [4], pp. 197–292

    Google Scholar 

  2. Baeten, J.C.M., Middelburg, C.A.: Process algebra with timing: Real time and discrete time. In: [4], pp. 627–684

    Google Scholar 

  3. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier Science B.V., Amsterdam (2001)

    MATH  Google Scholar 

  5. Best, E.: Semantics of Sequential and Parallel Programs. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  6. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (2001)

    Google Scholar 

  7. Boudol, G., Castellani, I.: Flow models of distributed computations: Three equivalent semantics for CCS. Information and Computation 114(2), 247–314 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Symposium on Operating Systems, pp. 89–102 (1974)

    Google Scholar 

  9. Castellani, I.: Process algebras with localities. In: [4], pp. 945–1045

    Google Scholar 

  10. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)

    Google Scholar 

  11. Degano, P., De Nicola, R., Montanari, U.: A partial ordering semantics for CCS. Theoretical Computer Science 75(3), 223–262 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23, 151–195 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. van Glabbeek, R.: The linear time – branching time spectrum I. In: [4], pp. 3–99

    Google Scholar 

  15. van Glabbeek, R., Goltz, U.: Refinement of actions in causality based models. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 267–300. Springer, Heidelberg (1990)

    Google Scholar 

  16. van Glabbeek, R., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)

    Google Scholar 

  17. Goltz, U.: Über die Darstellung von CCS-Programmen durch Petrinetze. Dissertation, Gesellschaft für Mathematik und Datenverarbeitung (1988)

    Google Scholar 

  18. Hoare, C.A.R.: Communicating sequential processes. Comm. of the ACM 21, 666–677 (1978)

    Article  MATH  Google Scholar 

  19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  20. Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems – the COSY Approach. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  21. Keller, R.: Formal verification of parallel programs. Comm. of the ACM 19, 371–384 (1976)

    Article  MATH  Google Scholar 

  22. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Informatica 40, 95–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Klaudel, H., Pommereau, F.: M-nets: a survey (2003)(manuscript) (submitted)

    Google Scholar 

  24. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  25. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  26. Olderog, E.R.: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science, vol. 23. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  27. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  28. Plotkin, G.D.: A structural approach to operational semantics. Report FN-19, Computer Science Department, University of Aarhus (1981)

    Google Scholar 

  29. Priese, L., Wimmel, H.: Petri-Netze. In: Theoretische Informatik. Springer, Heidelberg (2003)

    Google Scholar 

  30. Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and Applied Logic 90(1-3), 163–191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stehno, C.: Real-time systems design with PEP. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 476–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Taubner, D.A. (ed.): Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  33. Winskel, G.: Petri nets, algebras, morphisms and compositionality. Information and Control 72, 197–238 (1987)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Best, E., Koutny, M. (2004). Process Algebra. In: Desel, J., Reisig, W., Rozenberg, G. (eds) Lectures on Concurrency and Petri Nets. ACPN 2003. Lecture Notes in Computer Science, vol 3098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27755-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27755-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22261-3

  • Online ISBN: 978-3-540-27755-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics