Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evolutionary Approach for Studying Heterogeneous Strategies in Electronic Markets

  • Conference paper
Engineering Self-Organising Systems (ESOA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2977))

Included in the following conference series:

Abstract

We propose an evolutionary approach for studying strategic agents that interact in electronic marketplaces. We describe how this approach can be used when agents’ strategies are based on different methodologies, employing incompatible rules for collecting information and for reproduction. We present experimental results from a simulated market, where multiple service providers compete for customers using different deployment and pricing schemes. The results show that heterogeneous strategies evolve in the same market and provide useful research data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anas, A., Arnott, R., Small, K.A.: Urban spatial structure. Journal of Economic Literature 36(3), 1426–1464 (1998)

    Google Scholar 

  2. Axelrod, R.M.: The evolution of cooperation. Basic Books, New York (1984)

    Google Scholar 

  3. Axelrod, R.: The complexity of cooperation. Princeton University Press, Princeton (1997)

    Google Scholar 

  4. Babanov, A., Ketter, W., Gini, M.: An evolutionary framework for large-scale experimentation in multi-agent systems. In: Wagner, T. (ed.) MAS Problem Spaces and Their Implications to Achieving Globally Coherent Behavior, Kluwer, Dordrecht (2003)

    Google Scholar 

  5. Brooks, C.H., Gazzale, R., Das, R., Kephart, J.O., MacKie-Mason, J.K., Durfee, E.H.: Model selection in an information economy: Choosing what to learn. Computational Intelligence (April 2002)

    Google Scholar 

  6. Cliff, D., Bruten, J.: Minimal intelligence agents for bargaining behaviors in marketbased environments. Technical Report HPL-97-91, Hewlett Packard Labs (1997)

    Google Scholar 

  7. Cliff, D.: Evolutionary optimization of parameter sets for adaptive softwareagent traders in continuous double auction markets. Technical Report HPL-2001-99, Hewlett Packard Labs (2001)

    Google Scholar 

  8. Collins, J., Ketter, W., Gini, M.: A multi-agent negotiation testbed for contracting tasks with temporal and precedence constraints. Int’l Journal of Electronic Commerce 7(1), 35–57 (2002)

    Google Scholar 

  9. Das, R., Hanson, J.E., Kephart, J.O., Tesauro, G.: Agenthuman interactions in the continuous double auction. In: Proc. of the 17th Joint Conf. on Artificial Intelligence, Seattle, WA, USA (August 2001)

    Google Scholar 

  10. DiMicco, J.M., Greenwald, A., Maes, P.: Dynamic pricing strategies under a finite time horizon. In: Proc. of ACM Conf. on Electronic Commerce (EC 2001) (October 2001)

    Google Scholar 

  11. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press, Cambridge (1996)

    Google Scholar 

  12. Forrest, S.: Genetic algorithms: Principles of natural selection applied to computation. Science 261, 872–878 (1993)

    Article  Google Scholar 

  13. Gaylord, R.J., D’Andrea, L.J.: Simulating Society. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  14. Kephart, J.O., Hanson, J.E., Greenwald, A.R.: Dynamic pricing by software agents. Computer Networks 32(6), 731–752 (2000)

    Article  Google Scholar 

  15. Lerman, K.: Design and mathematical analysis of agent-based systems. In: Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS 2000. LNCS (LNAI), vol. 1871, pp. 222–233. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Lindgren, K.: Evolutionary dynamics in game-theoretic models. In: The Economy as an Evolving Complex System II, pp. 337–367 (1997)

    Google Scholar 

  17. McFadzean, D., Stewart, D., Tesfatsion, L.: A computational laboratory for evolutionary trade networks. IEEE Transactions on Evolutionary Computation 5(5), 546–560 (2001)

    Article  Google Scholar 

  18. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  19. Mills, E.S., Lav, M.R.: A model of market areas with free entry. Journal of Political Economy 72(3), 278–288 (1964)

    Article  Google Scholar 

  20. Nelson, R.R.: Recent evolutionary theorizing about economic change. Journal of Economic Literature 33(1), 48–90 (1995)

    Google Scholar 

  21. Oechssler, J., Riedel, F.: On the dynamic foundation of evolutionary stability in continuous models. Journal of Economic Theory 107, 223–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. O’Sullivan, A.: Urban Economics. McGraw-Hill Higher Education (1999)

    Google Scholar 

  23. Park, S., Durfee, E.H., Birmingham, W.P.: An adaptive agent bidding strategy based on stochastic modeling. In: Proc. of the Third Int’l Conf. on Autonomous Agents (1999)

    Google Scholar 

  24. Phelps, S., McBurney, P., Parsons, S., Sklar, E.: Coevolutionary mechanism design: a preliminary report. In: Padget, J., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 123–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Roth, A.E.: The economist as engineer: Game theory, experimentation, and computation as tools for design economics. Econometrica 70(4), 1341–1378 (2002)

    Article  MATH  Google Scholar 

  26. Schelling, T.C.: Micromotives and Macrobehavior. W.W. Norton & Company, Inc., New York (1978)

    Google Scholar 

  27. Shehory, O., Kraus, S., Yadgar, O.: Emergent cooperative goal-satisfaction in large scale automated-agent systems. Artificial Intelligence 110(1) (May 1999)

    Google Scholar 

  28. Maynard Smith, J.: Evolution and the Theory of Games, December 1982. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  29. Tesfatsion, L.: Agent-based computational economics: Growing economies from the bottom up. Artificial Life 8(1), 55–82 (2002)

    Article  MathSciNet  Google Scholar 

  30. Weibull, J.W.: Evolutionary Game Theory. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babanov, A., Ketter, W., Gini, M. (2004). An Evolutionary Approach for Studying Heterogeneous Strategies in Electronic Markets. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds) Engineering Self-Organising Systems. ESOA 2003. Lecture Notes in Computer Science(), vol 2977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24701-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24701-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21201-0

  • Online ISBN: 978-3-540-24701-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics