Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identifying Candidate Tasks for Robotic Process Automation in Textual Process Descriptions

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2018, EMMSAD 2018)

Abstract

The continuous digitization requires organizations to improve the automation of their business processes. Among others, this has lead to an increased interest in Robotic Process Automation (RPA). RPA solutions emerge in the form of software that automatically executes repetitive and routine tasks. While the benefits of RPA on cost savings and other relevant performance indicators have been demonstrated in different contexts, one of the key challenges for RPA endeavors is to effectively identify processes and tasks that are suitable for automation. Textual process descriptions, such as work instructions, provide rich and important insights about this matter. However, organizations often maintain hundreds or even thousands of them, which makes a manual analysis unfeasible for larger organizations. Recognizing the large manual effort required to determine the current degree of automation in an organization’s business processes, we use this paper to propose an approach that is able to automatically do so. More specifically, we leverage supervised machine learning to automatically identify whether a task described in a textual process description is manual, an interaction of a human with an information system or automated. An evaluation with a set of 424 activities from a total of 47 textual process descriptions demonstrates that our approach produces satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.math.utah.edu/~wisnia/glossary.html.

  2. 2.

    Note that the way Weka generates ROC curves results in only as many threshold values as there are distinct probability values assigned to the positive class. Therefore, the ROC curves from Fig. 3 are only based on three data points. This, however, does not reduce their informative value.

References

  1. Van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity in textual process descriptions. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 271–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_16

    Chapter  Google Scholar 

  2. Van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models: the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2017)

    Article  Google Scholar 

  3. Van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and consequences of fragmented process information: insights from a case study. In: Proceedings of the Annual Americas’ Conference on Information Systems (2017)

    Google Scholar 

  4. van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced workflow patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 18–29. Springer, Heidelberg (2000). https://doi.org/10.1007/10722620_2

    Chapter  Google Scholar 

  5. Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7

    Chapter  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Google Scholar 

  7. Davenport, T.H., Kirby, J.: Just how smart are smart machines? MIT Sloan Manage. Rev. 57(3), 21 (2016)

    Google Scholar 

  8. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  9. Dumas, M., Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

    Book  Google Scholar 

  10. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36

    Chapter  Google Scholar 

  11. Fung, H.P.: Criteria, use cases and effects of information technology process automation (ITPA). Browser Download This Paper (2014)

    Google Scholar 

  12. Gacitua-Decar, V., Pahl, C.: Automatic business process pattern matching for enterprise services design. In: IEEE Congress on Services Part II, pp. 111–118 (2009)

    Google Scholar 

  13. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from process modeling to workflow automation infrastructure. Distrib. Parallel Databases 3(2), 119–153 (1995)

    Article  Google Scholar 

  14. Ghose, A.K., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In: Proceedings of the IEEE Congress on Services, pp. 167–174. IEEE Computer Society (2007)

    Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  17. Kirchmer, M.: Robotic process automation-pragmatic solution or dangerous illusion? BTOES Insights, June 2017

    Google Scholar 

  18. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: 41st Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)

    Google Scholar 

  19. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_17

    Chapter  Google Scholar 

  20. Lacity, M., Willcocks, L.P., Craig, A.: Robotic process automation at telefonica O2 (2015)

    Google Scholar 

  21. Lacity, M.C., Willcocks, L.P.: A new approach to automating services. MIT Sloan Manage. Rev. 58(1), 41 (2016)

    Google Scholar 

  22. Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.: Searching textual and model-based process descriptions based on a unified data format. Softw. Syst. Model. 1–16 (2017)

    Google Scholar 

  23. Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)

    Article  Google Scholar 

  24. Leopold, H., Mendling, J.: Automatic derivation of service candidates from business process model repositories. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 84–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30359-3_8

    Chapter  Google Scholar 

  25. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5_25

    Chapter  Google Scholar 

  26. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)

    Article  Google Scholar 

  27. Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago (1993)

    Google Scholar 

  28. Leyh, C., Bley, K., Seek, S.: Elicitation of processes in business process management in the era of digitization – the same techniques as decades ago? In: Piazolo, F., Geist, V., Brehm, L., Schmidt, R. (eds.) ERP Future 2016. LNBIP, vol. 285, pp. 42–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58801-8_4

    Chapter  Google Scholar 

  29. Miller, G., Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    Google Scholar 

  30. Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lexical ambiguity in process models (2015)

    Google Scholar 

  31. Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language text: A state-of-the-art analysis. In: Multikonferenz Wirtschaftsinformatik (MKWI-16). Universität Illmenau , Illmenau, Germany, 9–11 March 2016

    Google Scholar 

  32. Sànchez-Ferreres, J., Carmona, J., Padró, L.: Aligning textual and graphical descriptions of processes through ILP techniques. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 413–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_26

    Chapter  Google Scholar 

  33. Schuler, K.K.: Verbnet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, Philadelphia, PA, USA (2005)

    Google Scholar 

  34. Stohr, E.A., Zhao, J.L.: Workflow automation: overview and research issues. Inf. Syst. Front. 3(3), 281–296 (2001)

    Article  Google Scholar 

  35. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    Google Scholar 

  36. Walenz, B., Didion, J.: JWNL: Java wordnet library (2011)

    Google Scholar 

  37. Willcocks, L., Lacity, M.C.: Service Automation: Robots and the Future of Work. Steve Brookes Publishing, Warwickshire (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han van der Aa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leopold, H., van der Aa, H., Reijers, H.A. (2018). Identifying Candidate Tasks for Robotic Process Automation in Textual Process Descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2018 2018. Lecture Notes in Business Information Processing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-91704-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91704-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91703-0

  • Online ISBN: 978-3-319-91704-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics