Abstract
The continuous digitization requires organizations to improve the automation of their business processes. Among others, this has lead to an increased interest in Robotic Process Automation (RPA). RPA solutions emerge in the form of software that automatically executes repetitive and routine tasks. While the benefits of RPA on cost savings and other relevant performance indicators have been demonstrated in different contexts, one of the key challenges for RPA endeavors is to effectively identify processes and tasks that are suitable for automation. Textual process descriptions, such as work instructions, provide rich and important insights about this matter. However, organizations often maintain hundreds or even thousands of them, which makes a manual analysis unfeasible for larger organizations. Recognizing the large manual effort required to determine the current degree of automation in an organization’s business processes, we use this paper to propose an approach that is able to automatically do so. More specifically, we leverage supervised machine learning to automatically identify whether a task described in a textual process description is manual, an interaction of a human with an information system or automated. An evaluation with a set of 424 activities from a total of 47 textual process descriptions demonstrates that our approach produces satisfactory results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that the way Weka generates ROC curves results in only as many threshold values as there are distinct probability values assigned to the positive class. Therefore, the ROC curves from Fig. 3 are only based on three data points. This, however, does not reduce their informative value.
References
Van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity in textual process descriptions. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 271–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_16
Van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models: the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2017)
Van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and consequences of fragmented process information: insights from a case study. In: Proceedings of the Annual Americas’ Conference on Information Systems (2017)
van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced workflow patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 18–29. Springer, Heidelberg (2000). https://doi.org/10.1007/10722620_2
Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Davenport, T.H., Kirby, J.: Just how smart are smart machines? MIT Sloan Manage. Rev. 57(3), 21 (2016)
Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)
Dumas, M., Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36
Fung, H.P.: Criteria, use cases and effects of information technology process automation (ITPA). Browser Download This Paper (2014)
Gacitua-Decar, V., Pahl, C.: Automatic business process pattern matching for enterprise services design. In: IEEE Congress on Services Part II, pp. 111–118 (2009)
Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from process modeling to workflow automation infrastructure. Distrib. Parallel Databases 3(2), 119–153 (1995)
Ghose, A.K., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In: Proceedings of the IEEE Congress on Services, pp. 167–174. IEEE Computer Society (2007)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)
Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683
Kirchmer, M.: Robotic process automation-pragmatic solution or dangerous illusion? BTOES Insights, June 2017
Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: 41st Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)
Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_17
Lacity, M., Willcocks, L.P., Craig, A.: Robotic process automation at telefonica O2 (2015)
Lacity, M.C., Willcocks, L.P.: A new approach to automating services. MIT Sloan Manage. Rev. 58(1), 41 (2016)
Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.: Searching textual and model-based process descriptions based on a unified data format. Softw. Syst. Model. 1–16 (2017)
Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)
Leopold, H., Mendling, J.: Automatic derivation of service candidates from business process model repositories. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 84–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30359-3_8
Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5_25
Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)
Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago (1993)
Leyh, C., Bley, K., Seek, S.: Elicitation of processes in business process management in the era of digitization – the same techniques as decades ago? In: Piazolo, F., Geist, V., Brehm, L., Schmidt, R. (eds.) ERP Future 2016. LNBIP, vol. 285, pp. 42–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58801-8_4
Miller, G., Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lexical ambiguity in process models (2015)
Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language text: A state-of-the-art analysis. In: Multikonferenz Wirtschaftsinformatik (MKWI-16). Universität Illmenau , Illmenau, Germany, 9–11 March 2016
Sànchez-Ferreres, J., Carmona, J., Padró, L.: Aligning textual and graphical descriptions of processes through ILP techniques. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 413–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_26
Schuler, K.K.: Verbnet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, Philadelphia, PA, USA (2005)
Stohr, E.A., Zhao, J.L.: Workflow automation: overview and research issues. Inf. Syst. Front. 3(3), 281–296 (2001)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)
Walenz, B., Didion, J.: JWNL: Java wordnet library (2011)
Willcocks, L., Lacity, M.C.: Service Automation: Robots and the Future of Work. Steve Brookes Publishing, Warwickshire (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Leopold, H., van der Aa, H., Reijers, H.A. (2018). Identifying Candidate Tasks for Robotic Process Automation in Textual Process Descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2018 2018. Lecture Notes in Business Information Processing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-91704-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-91704-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91703-0
Online ISBN: 978-3-319-91704-7
eBook Packages: Computer ScienceComputer Science (R0)