Abstract
In this paper we present a web-based visualization system developed for visualizing real-time point cloud data obtained from LADAR (or other) sensors. The system allows direct visualization of captured data, visualization of data from database or visualization of preprocessed data (e.g. labeled or classified data). The system allows the concurrent visualization from same or different data-sources on multiple clients in the web browser. Due to the use of modern web technologies the client can also be used on mobile devices. The system is developed using modern client- and server-side web technologies. The system allows connection with an existing LADAR sensor grabber applications through use of UDP sockets. Both server- and client-side parts of the system are modular and allow the integration of newly developed modules and designing a specific work-flow scenarios for target end-user groups. The system allows the interactive visualization of datasets with millions of points as well as streaming visualization with high throughput speeds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The application is developed in C++ and does was not developed as part of the presented work.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D.B., Seitz, S.M., Fox, D.: Interactive 3D modeling of indoor environments with a consumer depth camera. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 75–84. ACM (2011)
Haala, N., Peter, M., Kremer, J., Hunter, G.: Mobile LiDAR mapping for 3D point cloud collection in urban areas - a performance test. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 37, 1119–1127 (2008)
Molebny, V., McManamon, P.F., Steinvall, O., Kobayashi, T., Chen, W.: Laser radar: historical prospective-from the east to the west. Opt. Eng. 56, 56 (2016). https://spie.org/publications/journal/10.1117/1.OE.56.3.031220?SSO=1
Rosnell, T., Honkavaara, E.: Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12(1), 453–480 (2012)
Wang, C.C., Thorpe, C., Suppe, A.: LADAR-based detection and tracking of moving objectsfrom a ground vehicle at high speeds. In: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), pp. 416–421, June 2003
Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian detection and tracking using three-dimensional LADAR data. Int. J. Robot. Res. 29(12), 1516–1528 (2010)
Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In: IEEE International Conference on Robotics and automation (ICRA) 2011, pp. 1–4. IEEE (2011)
Kreylos, O., Bawden, G.W., Kellogg, L.H.: Immersive visualization and analysis of LiDAR data. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 846–855. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_81
Su, T., Wang, W., Lv, Z., Wu, W., Li, X.: Rapid delaunay triangulation for randomly distributed point cloud data using adaptive hilbert curve. Comput. Graph. 54, 65–74 (2016). Special Issue on CAD/Graphics 2015
Hug, C., Krzystek, P., Fuchs, W.: Advanced lidar data processing with lastools. In: ISPRS Congress, pp. 12–23 (2004)
van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M., Gonçalves, R.: Massive point cloud data management. Comput. Graph. 49(C), 92–125 (2015)
Lavrič, P., Bohak, C., Marolt, M.: Collaborative view-aligned annotations in web-based 3D medical data visualization. In: MIPRO 2017, 40th Jubilee International Convention, 22–26 May 2017, Opatija, Croatia, proceedings, pp. 276–280 (2017)
Schütz, M.: Potree: Rendering Large Point Clouds in Web Browsers. Master’s thesis, Institute of Computer Graphics and Algorithms, Vienna, University of Technology, Favoritenstrasse 9–11/186, A-1040 Vienna, Austria, September 2016
Marion, C., Jomier, J.: Real-time collaborative scientific WebGL visualization with WebSocket. In: Proceedings of the 17th International Conference on 3D Web Technology, pp. 47–50. ACM (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bohak, C., Kim, B.H., Kim, M.Y. (2018). Web-Based Real-Time LADAR Data Visualization with Multi-user Collaboration Support. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-95270-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95269-7
Online ISBN: 978-3-319-95270-3
eBook Packages: Computer ScienceComputer Science (R0)