Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distinguishing Vagueness from Ambiguity in Dominance-Based Rough Set Approach by Means of a Bipolar Pawlak-Brouwer-Zadeh Lattice

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10314))

Included in the following conference series:

Abstract

In this paper, we present a new algebraic model for Dominance-based Rough Set Approach. Extending the Pawlak-Brouwer-Zadeh lattice introduced for indiscernibility-based rough set approach, the new model permits to distinguish between two kinds of imperfect information in case of ordered data: vagueness due to imprecision, and ambiguity due to coarseness typical to rough sets. To build the model we use the bipolar Brouwer-Zadeh lattice to represent a basic vagueness, and to introduce dominance-based rough approximations we define a new operator, called bipolar Pawlak operator. The new model we obtain in this way is called bipolar Pawlak-Brouwer-Zadeh lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) Lattices). Stud. Logica. 58, 47–77 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 208–252. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27778-1_12

    Chapter  Google Scholar 

  3. Cattaneo, G., Ciucci, D.: Lattices with interior and closure operators and abstract approximation spaces. In: Peters, J.F., Skowron, A., Wolski, M., Chakraborty, M.K., Wu, W.-Z. (eds.) Transactions on Rough Sets X. LNCS, vol. 5656, pp. 67–116. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03281-3_3

    Chapter  Google Scholar 

  4. Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal operators based on de Morgan and Kleene lattices. Inform. Sci. 181, 4075–4100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cattaneo, G., Nisticò, G.: Brouwer-Zadeh poset and three-valued Łukasiewicz posets. Fuzzy Sets Syst. 33, 165–190 (1989)

    Article  MATH  Google Scholar 

  6. Dubois, D., Prade, H., Foreword, In: Pawlak, Z. (ed.) Rough Sets, Kluwer, Dordrecht (1991)

    Google Scholar 

  7. Greco, S., Matarazzo, B., Słowiński, R.: A new rough set approach to evaluation of bankruptcy risk. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, pp. 121–136. Springer, Berlin (1998)

    Chapter  Google Scholar 

  8. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2001)

    Article  MATH  Google Scholar 

  9. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur. J. Oper. Res. 138, 247–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation by dominance relations. Int. J. Intell. Syst. 17, 153–171 (2002)

    Article  MATH  Google Scholar 

  11. Greco, S., Matarazzo, B., Slowinski, R.: Decision rule approach. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 497–552. Springer, New York (2016). doi:10.1007/978-1-4939-3094-4_13

    Chapter  Google Scholar 

  12. Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71663-1_3

    Chapter  Google Scholar 

  13. Greco, S., Matarazzo, B., Słowiński, R.: The bipolar complemented de Morgan Brouwer-Zadeh Distributive lattice as an algebraic structure for the dominance-based rough set approach. Fundam. Inform. 115, 25–56 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Greco, S., Matarazzo, B., Słowiński, R.: Distinguishing vagueness from ambiguity by means of Pawlak-Brouwer-Zadeh lattices. In: Greco, S., et al. (eds.) International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems - IPMU 2012, CCIS 297, pp. 624–632. Springer, Berlin (2012)

    Google Scholar 

  15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  16. Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  17. Polkowski, L.: Rough Sets - Mathematical Foundations. Physica-Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Słowiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Greco, S., Matarazzo, B., Słowiński, R. (2017). Distinguishing Vagueness from Ambiguity in Dominance-Based Rough Set Approach by Means of a Bipolar Pawlak-Brouwer-Zadeh Lattice. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60840-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60839-6

  • Online ISBN: 978-3-319-60840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics