Abstract
Argumentation during the academic life is a critical skill when writing. This skill is needed to communicate clearly ideas and to convince the reader of the presented claims. However, not many students are good arguers and this is a skill difficult to master. This paper presents advances in the development of an argument assessment module. Such module supports students to identify argumentative paragraphs and determine the level of argumentation in the text. The task is achieved employing machine learning techniques with lexical features such as unigrams, bigrams, and argumentative markers categories. We based the module on an annotated collection of student writings, that serves for training. We performed an initial experiment to evaluate argumentative paragraph identification in the justification section of theses, reaching encouraging results, when compared against previously proposed approaches. The module is one component of a Thesis Writing Tutor, an Internet-based learning software for academic writing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In Spanish: TURET: Tutor para la Redacción de Tesis.
- 2.
Spanish royal academy.
- 3.
Advanced College-level Technician degree, study program offered in some countries.
References
Abbas, S., Sawamura, H.: Ales: An innovative argument-learning environment. Online Submission 7(9), 58–67 (2010)
Buckingham Shum, S.: The Roots of Computer Supported Argument Visualization, pp. 3–24. Springer London, London (2003)
Burstein, J., Chodorow, M., Leacock, C.: Criterionsm online essay evaluation: an application for automated evaluation of student essays. In: IAAI, pp. 3–10 (2003)
Carstens, L., Toni, F.: Towards relation based argumentation mining. In: NAACL HLT 2015, p. 29 (2015)
Cho, K., Schunn, C.D.: Scaffolded writing and rewriting in the discipline: a web-based reciprocal peer review system. Comput. Educ. 48(3), 409–426 (2007)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychosoc. Measur. 20(1), 37–46 (1960)
De Groot, R., Drachman, R., Hever, R., Schwarz, B.B., Hoppe, U., Harrer, A., De Laat, M., Wegerif, R., McLaren, B.M., Baurens, B.: Computer supported moderation of e-discussions: the argunaut approach. In: Proceedings of the 8th International Conference on Computer Supported Collaborative Learning, pp. 168–170. International Society of the Learning Sciences (2007)
Florou, E., Konstantopoulos, S., Koukourikos, A., Karampiperis, P.: Argument extraction for supporting public policy formulation. In: Proceedings of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pp. 49–54 (2013)
González-López, S., López-López, A.: Colección de tesis y propuesta de investigación en tics: un recurso para su análisis y estudio. In: XIII Congreso Nacional de Investigación Educativa, pp. 1–15 (2015)
González-López, S., López-López, A.: Lexical analysis of student research drafts in computing. Comput. Appl. Eng. Educ. 23(4), 638–644 (2015)
Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 287–299. Springer, Cham (2014). doi:10.1007/978-3-319-07064-3_23
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Huang, C.J., Wang, Y.W., Huang, T.H., Liao, J.J., Chen, C.H., Weng, C.H., Chu, Y.J., Chien, C.Y., Shen, H.Y.: Implementation and performance evaluation of an intelligent online argumentation assessment system. In: 2010 International Conference on Electrical and Control Engineering (ICECE), pp. 2560–2563. IEEE (2010)
Katzav, J., Reed, C., Rowe, G.W.A.: Argument research corpus. In: Proceedings of the 2003 Conference on Practical Applications in Language and Computers, pp. 229–239 (2004)
Kirschner, C., Eckle-Kohler, J., Gurevych, I.: Linking the thoughts: analysis of argumentation structures in scientific publications. In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 1–11 (2015)
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
Lippi, M., Torroni, P.: Margot: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)
Loll, F., Pinkwart, N.: Lasad: flexible representations for computer-based collaborative argumentation. Int. J. Hum. Comput. Stud. 71(1), 91–109 (2013)
López Ferrero, C., García Negroni, M.: La argumentación en los géneros académicos. In: Actas del Congreso Internacional La Argumentación, pp. 1121–1129. Universidad de Buenos Aires, Buenos Aires (2003)
Lynch, C., Ashley, K.D.: Modeling student arguments in research reports. In: Proceedings of the 4th AHFE Conference, pp. 191–201 (2012)
Mochales, R., Moens, M.F.: Study on the structure of argumentation in case law. In: Proceedings of the 2008 Conference on Legal Knowledge and Information Systems, pp. 11–20 (2008)
Mochales, R., Moens, M.F.: Argumentation mining. Artif. Intell. Law 19(1), 1–22 (2011)
Moens, M.F., Boiy, E., Palau, R.M., Reed, C.: Automatic detection of arguments in legal texts. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 225–230. ACM (2007)
Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 7(1), 1–31 (2013)
Pinkwart, N., Aleven, V., Ashley, K., Lynch, C.: Evaluating legal argument instruction with graphical representations using largo. Front. Artif. Intell. Appl. 158, 101 (2007)
Rahimi, Z., Litman, D., Correnti, R., Wang, E., Matsumura, L.C.: Assessing students use of evidence and organization in response-to-text writing: using natural language processing for rubric-based automated scoring. Int. J. Artif. Intell. Educ., 1–35 (2017)
Roscoe, R.D., Allen, L.K., Weston, J.L., Crossley, S.A., McNamara, D.S.: The writing pal intelligent tutoring system: usability testing and development. Comput. Composit. 34, 39–59 (2014)
Sardianos, C., Katakis, I.M., Petasis, G., Karkaletsis, V.: Argument extraction from news. In: NAACL HLT 2015, p. 56 (2015)
Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: EMNLP, pp. 46–56 (2014)
Stab, C., Gurevych, I.: Recognizing the absence of opposing arguments in persuasive essays. In: ACL 2016, p. 113 (2016)
Suthers, D.D.: Architectures for computer supported collaborative learning. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies, pp. 25–28. IEEE (2001)
Zhang, F., Litman, D.: A joint identification approach for argumentative writing revisions. arXiv preprint arXiv:1703.00089 (2017)
Acknowledgement
We thank the annotators for the assistance in the corpus creation. The first author was partially supported by CONACYT, México, under scholarship 357381.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
García-Gorrostieta, J.M., López-López, A., González-López, S. (2017). Towards Automatic Assessment of Argumentation in Theses Justifications. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds) Data Driven Approaches in Digital Education. EC-TEL 2017. Lecture Notes in Computer Science(), vol 10474. Springer, Cham. https://doi.org/10.1007/978-3-319-66610-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-66610-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66609-9
Online ISBN: 978-3-319-66610-5
eBook Packages: Computer ScienceComputer Science (R0)