Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Automatic Assessment of Argumentation in Theses Justifications

  • Conference paper
  • First Online:
Data Driven Approaches in Digital Education (EC-TEL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10474))

Included in the following conference series:

Abstract

Argumentation during the academic life is a critical skill when writing. This skill is needed to communicate clearly ideas and to convince the reader of the presented claims. However, not many students are good arguers and this is a skill difficult to master. This paper presents advances in the development of an argument assessment module. Such module supports students to identify argumentative paragraphs and determine the level of argumentation in the text. The task is achieved employing machine learning techniques with lexical features such as unigrams, bigrams, and argumentative markers categories. We based the module on an annotated collection of student writings, that serves for training. We performed an initial experiment to evaluate argumentative paragraph identification in the justification section of theses, reaching encouraging results, when compared against previously proposed approaches. The module is one component of a Thesis Writing Tutor, an Internet-based learning software for academic writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In Spanish: TURET: Tutor para la Redacción de Tesis.

  2. 2.

    Spanish royal academy.

  3. 3.

    Advanced College-level Technician degree, study program offered in some countries.

References

  1. Abbas, S., Sawamura, H.: Ales: An innovative argument-learning environment. Online Submission 7(9), 58–67 (2010)

    Google Scholar 

  2. Buckingham Shum, S.: The Roots of Computer Supported Argument Visualization, pp. 3–24. Springer London, London (2003)

    Google Scholar 

  3. Burstein, J., Chodorow, M., Leacock, C.: Criterionsm online essay evaluation: an application for automated evaluation of student essays. In: IAAI, pp. 3–10 (2003)

    Google Scholar 

  4. Carstens, L., Toni, F.: Towards relation based argumentation mining. In: NAACL HLT 2015, p. 29 (2015)

    Google Scholar 

  5. Cho, K., Schunn, C.D.: Scaffolded writing and rewriting in the discipline: a web-based reciprocal peer review system. Comput. Educ. 48(3), 409–426 (2007)

    Article  Google Scholar 

  6. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychosoc. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  7. De Groot, R., Drachman, R., Hever, R., Schwarz, B.B., Hoppe, U., Harrer, A., De Laat, M., Wegerif, R., McLaren, B.M., Baurens, B.: Computer supported moderation of e-discussions: the argunaut approach. In: Proceedings of the 8th International Conference on Computer Supported Collaborative Learning, pp. 168–170. International Society of the Learning Sciences (2007)

    Google Scholar 

  8. Florou, E., Konstantopoulos, S., Koukourikos, A., Karampiperis, P.: Argument extraction for supporting public policy formulation. In: Proceedings of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pp. 49–54 (2013)

    Google Scholar 

  9. González-López, S., López-López, A.: Colección de tesis y propuesta de investigación en tics: un recurso para su análisis y estudio. In: XIII Congreso Nacional de Investigación Educativa, pp. 1–15 (2015)

    Google Scholar 

  10. González-López, S., López-López, A.: Lexical analysis of student research drafts in computing. Comput. Appl. Eng. Educ. 23(4), 638–644 (2015)

    Article  Google Scholar 

  11. Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 287–299. Springer, Cham (2014). doi:10.1007/978-3-319-07064-3_23

    Chapter  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Huang, C.J., Wang, Y.W., Huang, T.H., Liao, J.J., Chen, C.H., Weng, C.H., Chu, Y.J., Chien, C.Y., Shen, H.Y.: Implementation and performance evaluation of an intelligent online argumentation assessment system. In: 2010 International Conference on Electrical and Control Engineering (ICECE), pp. 2560–2563. IEEE (2010)

    Google Scholar 

  14. Katzav, J., Reed, C., Rowe, G.W.A.: Argument research corpus. In: Proceedings of the 2003 Conference on Practical Applications in Language and Computers, pp. 229–239 (2004)

    Google Scholar 

  15. Kirschner, C., Eckle-Kohler, J., Gurevych, I.: Linking the thoughts: analysis of argumentation structures in scientific publications. In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 1–11 (2015)

    Google Scholar 

  16. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  MATH  Google Scholar 

  17. Lippi, M., Torroni, P.: Margot: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)

    Article  Google Scholar 

  18. Loll, F., Pinkwart, N.: Lasad: flexible representations for computer-based collaborative argumentation. Int. J. Hum. Comput. Stud. 71(1), 91–109 (2013)

    Article  Google Scholar 

  19. López Ferrero, C., García Negroni, M.: La argumentación en los géneros académicos. In: Actas del Congreso Internacional La Argumentación, pp. 1121–1129. Universidad de Buenos Aires, Buenos Aires (2003)

    Google Scholar 

  20. Lynch, C., Ashley, K.D.: Modeling student arguments in research reports. In: Proceedings of the 4th AHFE Conference, pp. 191–201 (2012)

    Google Scholar 

  21. Mochales, R., Moens, M.F.: Study on the structure of argumentation in case law. In: Proceedings of the 2008 Conference on Legal Knowledge and Information Systems, pp. 11–20 (2008)

    Google Scholar 

  22. Mochales, R., Moens, M.F.: Argumentation mining. Artif. Intell. Law 19(1), 1–22 (2011)

    Article  Google Scholar 

  23. Moens, M.F., Boiy, E., Palau, R.M., Reed, C.: Automatic detection of arguments in legal texts. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 225–230. ACM (2007)

    Google Scholar 

  24. Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 7(1), 1–31 (2013)

    Article  Google Scholar 

  25. Pinkwart, N., Aleven, V., Ashley, K., Lynch, C.: Evaluating legal argument instruction with graphical representations using largo. Front. Artif. Intell. Appl. 158, 101 (2007)

    Google Scholar 

  26. Rahimi, Z., Litman, D., Correnti, R., Wang, E., Matsumura, L.C.: Assessing students use of evidence and organization in response-to-text writing: using natural language processing for rubric-based automated scoring. Int. J. Artif. Intell. Educ., 1–35 (2017)

    Google Scholar 

  27. Roscoe, R.D., Allen, L.K., Weston, J.L., Crossley, S.A., McNamara, D.S.: The writing pal intelligent tutoring system: usability testing and development. Comput. Composit. 34, 39–59 (2014)

    Article  Google Scholar 

  28. Sardianos, C., Katakis, I.M., Petasis, G., Karkaletsis, V.: Argument extraction from news. In: NAACL HLT 2015, p. 56 (2015)

    Google Scholar 

  29. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: EMNLP, pp. 46–56 (2014)

    Google Scholar 

  30. Stab, C., Gurevych, I.: Recognizing the absence of opposing arguments in persuasive essays. In: ACL 2016, p. 113 (2016)

    Google Scholar 

  31. Suthers, D.D.: Architectures for computer supported collaborative learning. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies, pp. 25–28. IEEE (2001)

    Google Scholar 

  32. Zhang, F., Litman, D.: A joint identification approach for argumentative writing revisions. arXiv preprint arXiv:1703.00089 (2017)

Download references

Acknowledgement

We thank the annotators for the assistance in the corpus creation. The first author was partially supported by CONACYT, México, under scholarship 357381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Miguel García-Gorrostieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Gorrostieta, J.M., López-López, A., González-López, S. (2017). Towards Automatic Assessment of Argumentation in Theses Justifications. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds) Data Driven Approaches in Digital Education. EC-TEL 2017. Lecture Notes in Computer Science(), vol 10474. Springer, Cham. https://doi.org/10.1007/978-3-319-66610-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66610-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66609-9

  • Online ISBN: 978-3-319-66610-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics