Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extension of a One-Dimensional Convexity Measure to Two Dimensions

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10256))

Included in the following conference series:

Abstract

In this paper we propose a new idea to design a measure for shape descriptors based on the concept of Q-convexity. The new measure extends the directional convexity measure defined in [2] to a two-dimensional convexity measure. The derived shape descriptors have the following features: (1) their values range from 0 to 1; (2) their values equal 1 if and only if the binary image is Q-convex; (3) they are invariant by reflection and point symmetry; (4) their computation can be easily and efficiently implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balázs, P., Brunetti, S.: A measure of Q-Convexity. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 219–230. Springer, Cham (2016). doi:10.1007/978-3-319-32360-2_17

    Chapter  Google Scholar 

  2. Balázs, P., Ozsvár, Z., Tasi, T.S., Nyúl, L.G.: A measure of directional convexity inspired by binary tomography. Fundamenta Informaticae 141(2–3), 151–167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: a property for the reconstruction. Int. J. Imag. Syst. Technol. 9, 69–77 (1998)

    Article  Google Scholar 

  4. Boxter, L.: Computing deviations from convexity in polygons. Pattern Recogn. Lett. 14, 163–167 (1993)

    Article  Google Scholar 

  5. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304(1–3), 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theor. Comput. Sci. 406(1–2), 55–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339, 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett. 69(6), 283–289 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daurat, A.: Salient points of Q-convex sets. Int. J. Pattern Recogn. Artif. Intell. 15, 1023–1030 (2001)

    Google Scholar 

  10. Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. Electron. Notes Discrete Math. 12, 208–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Understand. 73(3), 441–454 (1999)

    Article  Google Scholar 

  12. Nelson, M.R.: The Data Compression Book. M&T Books, Redwood City (1991)

    MATH  Google Scholar 

  13. Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. 28(9), 1501–1512 (2006)

    Article  Google Scholar 

  14. Rosin, P.L., Zunic, J.: Probabilistic convexity measure. IET Image Process. 1(2), 182–188 (2007)

    Article  Google Scholar 

  15. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Learning, Toronto (2008)

    Google Scholar 

  16. Stern, H.: Polygonal entropy: a convexity measure. Pattern Recogn. Lett. 10, 229–235 (1998)

    Article  MATH  Google Scholar 

  17. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE T. Pattern Anal. 26(7), 923–934 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The collaboration of the authors was supported by the COST Action MP1207 “EXTREMA: Enhanced X-ray Tomographic Reconstruction: Experiment, Modeling, and Algorithms”. The research of Péter Balázs and Péter Bodnár was supported by the NKFIH OTKA [grant number K112998]. The authors also thank the anonymous reviewers for their useful observations which enhanced the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Balázs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brunetti, S., Balázs, P., Bodnár, P. (2017). Extension of a One-Dimensional Convexity Measure to Two Dimensions. In: Brimkov, V., Barneva, R. (eds) Combinatorial Image Analysis. IWCIA 2017. Lecture Notes in Computer Science(), vol 10256. Springer, Cham. https://doi.org/10.1007/978-3-319-59108-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59108-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59107-0

  • Online ISBN: 978-3-319-59108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics