Abstract
We address the problem of blind piecewise space-variant image deblurring where only part of the image is sharp, assuming a shallow depth of field which imposes significant defocus blur.
We propose an automatic image recovery approach which segments the sharp and blurred sub-regions, iteratively estimates a non-parametric blur kernel and restores the sharp image via a variational non-blind space variant method.
We present a simple and efficient blur measure which emphasizes the blur difference of the sub-regions followed by a blur segmentation procedure based on an evolving level set function.
One of the contributions of this work is the extension to the space-variant case of progressive blind deconvolution recently proposed, an iterative process consisting of non-parametric blind kernel estimation and residual blur deblurring. Apparently this progressive strategy is superior to the one step deconvolution procedure. Experimental results on real images demonstrate the effectiveness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, S., Durand, F.: Defocus magnification. In: EUROGRAPHICS (2007)
Bar, L., Sochen, N., Kiryati, N.: Restoration of images with piecewise space-variant blur. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 533–544. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72823-8_46
Braides, A.: Approximation of Free-Discontinuity Problems. LNM, vol. 1694. Springer, Heidelberg (1998)
Cao, Y., Fang, S., Wang, Z.: Digital multi-focusing from a single photograph taken with an uncalibrated conventional camera. IEEE Trans. Image Process. 22, 3703–3714 (2013)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)
Chakrabarti, A., Zickler, T., Freeman, W.T.: Analyzing spatially-varying blur. In: CVPR (2010)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)
Frommer, Y., Ben-Ari, R., Kiryati, N.: Adaptive shape from focus based on high order derivatives. In: Proceedings of the 26th British Machine Vision Conference (BMVC 2015) (2015)
Hanocka, R., Kiryati, N.: Progressive blind deconvolution. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 313–325. Springer, Cham (2015). doi:10.1007/978-3-319-23117-4_27
Javaran, T.A., Hassanpour, H., Abolghasemi, V.: Automatic estimation and segmentation of partial blur in natural images. Vis. Comput. 33, 151–161 (2017). doi:10.1007/s00371-015-1166-z
Kimmel, R.: Fase edge integration. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging Vision and Graphics. Springer, New York (2003)
Komodakis, N., Paragios, N.: MRF-based blind image deconvolution. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 361–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37431-9_28
Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40246-3_8
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)
Lai, W.S., Huang, J.B., Hu, Z., Ahuja, A., Yang, M.H.: A comparative study for single image blind deblurring. In: CVPR (2016)
Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems (NIPS 2006) (2006)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)
Liu, S., Zhou, F., Liao, Q.: Defocus map estimation from a single image based on two-parameter defocus model. IEEE Trans. Image Process. 25, 5943–5956 (2016)
Loktyushin, A., Harmeling, S.: Automatic foreground-background refocusing. In: ICIP (2011)
Mahmoudpour, S., Kim, M.: Superpixel-based depth map estimation using defocus blur. In: ICIP (2016)
Marshall, J.A., Burbeck, C.A., Arieli, D., Rolland, J.P., Martin, K.E.: Occlusion edge blur: a cue to relative visual depth. J. Opt. Soc. Am. A 13, 681–688 (1996)
Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 824–831 (1994)
Pan, J., Hu, Z., Su, Z., Lee, H.Y., Yang, M.H.: Soft-segmentation guided object motion deblurring. In: CVPR (2016)
Pang, Y., Zhu, H., Li, X., Pan, J.: Motion blur detection with an indicator function for surveillance machines. IEEE Trans. Ind. Electron. 63, 5592–5601 (2016)
Schelten, K., Roth, S.: Localized image blur removal through non-parametric kernel estimation. In: ICPR (2014)
Tiwari, J., Rai, R.K., Shrman, B.: A review on estimation of defocus blur from a single image. Int. J. Comput. Appl. 106, 0975–8887 (2014)
Zhang, W., Cham, W.: Single-image refocusing and defocusing. IEEE Trans. Image Process. 21, 873–882 (2012)
Zhang, Y., Hirakawa, K.: Blind deblurring and denoising of images corrupted by unidirectional object motion blur and sensor noise. IEEE Trans. Image Process. 25, 4129–4144 (2016)
Zhu, X., Cohen, S., Schiller, S., Milanfar, P.: Estimating spatially varying defocus blur from a single image. IEEE Trans. Image Process. 22, 4879–4891 (2013)
Zon, N., Hanocka, R., Kiryati, N.: Fast and easy blind deblurring using an inverse filter and probe (2017). arXiv:1702.01315
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bar, L., Sochen, N., Kiryati, N. (2017). Blind Space-Variant Single-Image Restoration of Defocus Blur. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-58771-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58770-7
Online ISBN: 978-3-319-58771-4
eBook Packages: Computer ScienceComputer Science (R0)