Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blind Space-Variant Single-Image Restoration of Defocus Blur

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1617 Accesses

  • 4 Citations

Abstract

We address the problem of blind piecewise space-variant image deblurring where only part of the image is sharp, assuming a shallow depth of field which imposes significant defocus blur.

We propose an automatic image recovery approach which segments the sharp and blurred sub-regions, iteratively estimates a non-parametric blur kernel and restores the sharp image via a variational non-blind space variant method.

We present a simple and efficient blur measure which emphasizes the blur difference of the sub-regions followed by a blur segmentation procedure based on an evolving level set function.

One of the contributions of this work is the extension to the space-variant case of progressive blind deconvolution recently proposed, an iterative process consisting of non-parametric blind kernel estimation and residual blur deblurring. Apparently this progressive strategy is superior to the one step deconvolution procedure. Experimental results on real images demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://zoi.utia.cas.cz/deconv_sparsegrad.

References

  1. Bae, S., Durand, F.: Defocus magnification. In: EUROGRAPHICS (2007)

    Google Scholar 

  2. Bar, L., Sochen, N., Kiryati, N.: Restoration of images with piecewise space-variant blur. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 533–544. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72823-8_46

    Chapter  Google Scholar 

  3. Braides, A.: Approximation of Free-Discontinuity Problems. LNM, vol. 1694. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  4. Cao, Y., Fang, S., Wang, Z.: Digital multi-focusing from a single photograph taken with an uncalibrated conventional camera. IEEE Trans. Image Process. 22, 3703–3714 (2013)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chakrabarti, A., Zickler, T., Freeman, W.T.: Analyzing spatially-varying blur. In: CVPR (2010)

    Google Scholar 

  7. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Frommer, Y., Ben-Ari, R., Kiryati, N.: Adaptive shape from focus based on high order derivatives. In: Proceedings of the 26th British Machine Vision Conference (BMVC 2015) (2015)

    Google Scholar 

  9. Hanocka, R., Kiryati, N.: Progressive blind deconvolution. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 313–325. Springer, Cham (2015). doi:10.1007/978-3-319-23117-4_27

    Chapter  Google Scholar 

  10. Javaran, T.A., Hassanpour, H., Abolghasemi, V.: Automatic estimation and segmentation of partial blur in natural images. Vis. Comput. 33, 151–161 (2017). doi:10.1007/s00371-015-1166-z

    Article  Google Scholar 

  11. Kimmel, R.: Fase edge integration. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging Vision and Graphics. Springer, New York (2003)

    Google Scholar 

  12. Komodakis, N., Paragios, N.: MRF-based blind image deconvolution. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 361–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37431-9_28

    Chapter  Google Scholar 

  13. Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40246-3_8

    Chapter  Google Scholar 

  14. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)

    Google Scholar 

  15. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, A., Yang, M.H.: A comparative study for single image blind deblurring. In: CVPR (2016)

    Google Scholar 

  16. Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems (NIPS 2006) (2006)

    Google Scholar 

  17. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)

    Google Scholar 

  18. Liu, S., Zhou, F., Liao, Q.: Defocus map estimation from a single image based on two-parameter defocus model. IEEE Trans. Image Process. 25, 5943–5956 (2016)

    Article  MathSciNet  Google Scholar 

  19. Loktyushin, A., Harmeling, S.: Automatic foreground-background refocusing. In: ICIP (2011)

    Google Scholar 

  20. Mahmoudpour, S., Kim, M.: Superpixel-based depth map estimation using defocus blur. In: ICIP (2016)

    Google Scholar 

  21. Marshall, J.A., Burbeck, C.A., Arieli, D., Rolland, J.P., Martin, K.E.: Occlusion edge blur: a cue to relative visual depth. J. Opt. Soc. Am. A 13, 681–688 (1996)

    Article  Google Scholar 

  22. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 824–831 (1994)

    Article  Google Scholar 

  23. Pan, J., Hu, Z., Su, Z., Lee, H.Y., Yang, M.H.: Soft-segmentation guided object motion deblurring. In: CVPR (2016)

    Google Scholar 

  24. Pang, Y., Zhu, H., Li, X., Pan, J.: Motion blur detection with an indicator function for surveillance machines. IEEE Trans. Ind. Electron. 63, 5592–5601 (2016)

    Article  Google Scholar 

  25. Schelten, K., Roth, S.: Localized image blur removal through non-parametric kernel estimation. In: ICPR (2014)

    Google Scholar 

  26. Tiwari, J., Rai, R.K., Shrman, B.: A review on estimation of defocus blur from a single image. Int. J. Comput. Appl. 106, 0975–8887 (2014)

    Google Scholar 

  27. Zhang, W., Cham, W.: Single-image refocusing and defocusing. IEEE Trans. Image Process. 21, 873–882 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., Hirakawa, K.: Blind deblurring and denoising of images corrupted by unidirectional object motion blur and sensor noise. IEEE Trans. Image Process. 25, 4129–4144 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhu, X., Cohen, S., Schiller, S., Milanfar, P.: Estimating spatially varying defocus blur from a single image. IEEE Trans. Image Process. 22, 4879–4891 (2013)

    Article  MathSciNet  Google Scholar 

  30. Zon, N., Hanocka, R., Kiryati, N.: Fast and easy blind deblurring using an inverse filter and probe (2017). arXiv:1702.01315

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Bar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bar, L., Sochen, N., Kiryati, N. (2017). Blind Space-Variant Single-Image Restoration of Defocus Blur. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics