Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient and Stable Two-Pixel Scheme for 2D Forward-and-Backward Diffusion

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1430 Accesses

  • 2 Citations

Abstract

Image enhancement with forward-and-backward (FAB) diffusion is numerically very challenging due to its negative diffusivities. As a remedy, we first extend the explicit nonstandard scheme by Welk et al. (2009) from the 1D scenario to the practically relevant two-dimensional setting. We prove that under a fairly severe time step restriction, this 2D scheme preserves a maximum–minimum principle. Moreover, we find an interesting Lyapunov sequence which guarantees convergence to a flat steady state. Since a global application of the time step size restriction leads to very slow algorithms and is more restrictive than necessary for most pixels, we introduce a much more efficient scheme with locally adapted time step sizes. It applies diffusive two-pixel interactions in a randomised order and adapts the time step size to the specific pixel pair. These space-variant time steps are synchronised at sync times. Our experiments show that our novel two-pixel scheme allows to compute FAB diffusion with guaranteed \(L^\infty \)-stability at a speed that can be three orders of magnitude larger than its explicit counterpart with a global time step size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  2. Burgeth, B., Weickert, J., Tari, S.: Minimally stochastic schemes for singular diffusion equations. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations. (MATHVISUAL), pp. 325–339. Springer, Berlin (2007). doi:10.1007/978-3-540-33267-1_18

    Chapter  Google Scholar 

  3. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image sharpening by flows based on triple well potentials. J. Math. Imaging Vis. 20, 121–131 (2004)

    Article  MathSciNet  Google Scholar 

  4. Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11, 689–703 (2002)

    Article  Google Scholar 

  5. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recogn. 7, 53–58 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mrázek, P., Weickert, J., Steidl, G.: Diffusion-inspired shrinkage functions and stability results for wavelet denoising. Int. J. Comput. Vis. 64, 171–186 (2005)

    Article  Google Scholar 

  7. Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: Tescher, A.G. (ed.) Applications of Digital Image Processing XIV. Proceedings of SPIE, vol. 1567, pp. 414–431. SPIE Press, Bellingham (1991)

    Google Scholar 

  8. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  9. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  10. Pollak, I., Willsky, A.S., Krim, H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. Image Process. 9, 256–266 (2000)

    Article  MATH  Google Scholar 

  11. Smolka, B.: Combined forward and backward anisotropic diffusion filtering of color images. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 314–322. Springer, Heidelberg (2002). doi:10.1007/3-540-45783-6_38

    Chapter  Google Scholar 

  12. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  13. Weickert, J., Benhamouda, B.: A semidiscrete nonlinear scale-space theory and its relation to the Perona–Malik paradox. In: Solina, F., Kropatsch, W.G., Klette, R., Bajcsy, R. (eds.) Advances in Computer Vision. (ACS), pp. 1–10. Springer, Vienna (1997). doi:10.1007/978-3-7091-6867-7_1

    Chapter  Google Scholar 

  14. Welk, M., Gilboa, G., Weickert, J.: Theoretical foundations for discrete forward-and-backward diffusion filtering. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 527–538. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02256-2_44

    Chapter  Google Scholar 

  15. Welk, M., Weickert, J., Galić, I.: Theoretical foundations for spatially discrete 1-D shock filtering. Image Vis. Comput. 25, 455–463 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Welk, M., Weickert, J. (2017). An Efficient and Stable Two-Pixel Scheme for 2D Forward-and-Backward Diffusion. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics