Abstract
This paper proposes an interactive method for tubular structure segmentation. The method is based on the minimal paths obtained from the geodesic distance solved by the heat equation. This distance can be based both on isotropic or anisotropic metric by solving the corresponding heat equation. Thanks to the additional dimension added for the local radius around the centerline, our method can not only detect the centerline of the structure, but also extracts the boundaries of the structures. Our algorithm is tested on both synthetic and real images. The promising results demonstrate the robustness and effectiveness of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This image is obtained from the website of GettyImages, it is a DigitalGlobe Worldview-1 satellite image, showing abandoned cars on the road that leads to the top of the Sinjar Mountain Range.
References
Benmansour, F., Cohen, L.D., Law, M., Chung, A.: Tubular anisotropy for 2D vessel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)
Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92, 192–210 (2011)
Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)
Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32, 152 (2013)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49, 123–147 (2014)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195
Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_27
Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26, 1213–1223 (2007)
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–156 (1998)
Jean-Marie, M., Jérôme F., Laurent, R., Shaza, T.: Anisotropic diffusion in ITK. Insight J. (2015)
Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)
Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5, 197–397 (2010)
Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231, 1314–1338 (2012)
Schmitz, P.G., Ying, L.: A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys. 258, 227–245 (2014)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595 (1996)
Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (2004)
Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13, 103–118 (2002)
Yang, F., Cohen, L.D.: Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces. J. Math. Imaging Vis. 55(2), 210–228 (2016)
Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)
Crane K.: Geodesic in heat. https://www.cs.cmu.edu/~kmcrane/Projects/GeodesicsInHeat/index.html
Peyré, G.: Numerical tours. http://www.numerical-tours.com/matlab/#fastmarching
Acknowledgement
The authors would like to thank Dr. Jean-Marie Mirebeau for his fruitful discussions and suggestions on the numerical solutions of isotropic and anisotropic heat equations in 3D space.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yang, F., Cohen, L.D. (2017). Tubular Structure Segmentation Based on Heat Diffusion. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-58771-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58770-7
Online ISBN: 978-3-319-58771-4
eBook Packages: Computer ScienceComputer Science (R0)