Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tubular Structure Segmentation Based on Heat Diffusion

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

This paper proposes an interactive method for tubular structure segmentation. The method is based on the minimal paths obtained from the geodesic distance solved by the heat equation. This distance can be based both on isotropic or anisotropic metric by solving the corresponding heat equation. Thanks to the additional dimension added for the local radius around the centerline, our method can not only detect the centerline of the structure, but also extracts the boundaries of the structures. Our algorithm is tested on both synthetic and real images. The promising results demonstrate the robustness and effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This image is obtained from the website of GettyImages, it is a DigitalGlobe Worldview-1 satellite image, showing abandoned cars on the road that leads to the top of the Sinjar Mountain Range.

References

  1. Benmansour, F., Cohen, L.D., Law, M., Chung, A.: Tubular anisotropy for 2D vessel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  2. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92, 192–210 (2011)

    Article  Google Scholar 

  3. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)

    Article  Google Scholar 

  4. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32, 152 (2013)

    Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49, 123–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  9. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  10. Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26, 1213–1223 (2007)

    Article  Google Scholar 

  11. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–156 (1998)

    Article  Google Scholar 

  12. Jean-Marie, M., Jérôme F., Laurent, R., Shaza, T.: Anisotropic diffusion in ITK. Insight J. (2015)

    Google Scholar 

  13. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5, 197–397 (2010)

    Article  MATH  Google Scholar 

  15. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231, 1314–1338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmitz, P.G., Ying, L.: A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys. 258, 227–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (2004)

    Google Scholar 

  19. Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  21. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13, 103–118 (2002)

    Article  Google Scholar 

  22. Yang, F., Cohen, L.D.: Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces. J. Math. Imaging Vis. 55(2), 210–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Crane K.: Geodesic in heat. https://www.cs.cmu.edu/~kmcrane/Projects/GeodesicsInHeat/index.html

  25. Peyré, G.: Numerical tours. http://www.numerical-tours.com/matlab/#fastmarching

Download references

Acknowledgement

The authors would like to thank Dr. Jean-Marie Mirebeau for his fruitful discussions and suggestions on the numerical solutions of isotropic and anisotropic heat equations in 3D space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, F., Cohen, L.D. (2017). Tubular Structure Segmentation Based on Heat Diffusion. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics