Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 716))

  • 1344 Accesses

Abstract

The aim of the study was to apply rough set attribute reduction in a dispersed decision-making system. The system that was used was proposed by the author in a previous work. In this system, a global decision is taken based on the classifications that are by the base classifiers. In the process of decision-making, elements of conflict analysis and negotiations have been applied. Reduction of the set of conditional attributes in local decision tables was used in the paper. The aim of the study was to analyze and compare the results that were obtained after the reduction with the results that were obtained for the full set of attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bregar, A.: Towards a framework for the measurement and reduction of user-perceivable complexity of group decision-making methods. IJDSST 6(2), 21–45 (2014)

    Google Scholar 

  2. Cabrerizo, F.J., Herrera-Viedma, E., Pedrycz, W.: A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res. 230(3), 624–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Demri, S., Orlowska, E.: Incomplete Information: Structure, Inference. Complexity. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  4. Gatnar, E.: Multiple-model approach to classification and regression. PWN, Warsaw (2008)

    Google Scholar 

  5. Kuncheva, L.I.: Combining Pattern Classifiers Methods and Algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  6. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  7. Pawlak, Z.: On conflicts. Int. J. Man-Mach. Stud. 21(2), 127–134 (1984)

    Article  MATH  Google Scholar 

  8. Pawlak, Z.: An inquiry into anatomy of conflicts. Inf. Sci. 109(1–4), 65–78 (1998)

    Article  MathSciNet  Google Scholar 

  9. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  10. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Application of reduction of the set of conditional attributes in the process of global decision-making. Fundam. Inform. 122(4), 327–355 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Przybyła-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system - the use of negotiations during the dynamic generation of a system’s structure. Inf. Sci. 288, 194–219 (2014)

    Article  MATH  Google Scholar 

  12. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making system with dynamically generated clusters. Inf. Sci. 270, 172–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Przybyła-Kasperek, M.: Decision making system with dynamically generated disjoint clusters. Stud. Informatica 34(2A), 275–294 (2013)

    Google Scholar 

  14. Przybyła-Kasperek, M.: Global decisions taking process, including the stage of negotiation, on the basis of dispersed medical data. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 290–299. Springer, Cham (2014). doi:10.1007/978-3-319-06932-6_28

    Chapter  Google Scholar 

  15. Przybyla-Kasperek, M., Wakulicz-Deja, A.: Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters. Appl. Soft Comput. 40, 603–615 (2016)

    Article  MATH  Google Scholar 

  16. Schneeweiss, C.: Distributed decision making-a unified approach. Eur. J. Oper. Res. 150(2), 237–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Skowron, A.: Rough Set Exploration System. http://logic.mimuw.edu.pl/~rses/. Accessed 03 Nov 2016

  18. Skowron, A.: Rough sets and vague concepts. Fundam. Inform. 64(1–4), 417–431 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Skowron, A., Wang, H., Wojna, A., Bazan, J.G.: Multimodal Classification: Case Studies, Transactions on Rough Sets V. LNCS, vol. 4100, pp. 224–239. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Susmaga, R., Slowinski, R.: Generation of rough sets reducts and constructs based on inter-class and intra-class information. Fuzzy Sets Syst. 274, 124–142 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wakulicz-Deja, A., Przybyła-Kasperek, M.: Multi-agent decision system & comparision of methods. Stud. Informatica 31(2A), 173–188 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Przybyła-Kasperek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Przybyła-Kasperek, M. (2017). Attribute Reduction in a Dispersed Decision-Making System with Negotiations. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58274-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58273-3

  • Online ISBN: 978-3-319-58274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics