Abstract
This monograph revolves around the correspondences between sets and graphs and their applications to finite combinatorics, with an eye on proof methods and proof technology. Throughout, membership will be a nested relation. The restraint of using nothing but sets in the formation of sets does not in the least hinder generality, however disconcerting it may appear at first. The merits of nested usage of ∈ will be a recurrent theme in this book.
This introductory chapter supplies informal and quite elementary reasons motivating our exploration of the correspondences between sets and graphs. It also surveys some key ideas behind the correspondences that will be set forth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Notice that we normally write “Set Theory” with uppercase initials only when referring to the field of mathematics encompassing intuitive approaches to sets, besides the study of variant axiomatic systems about sets. No matter how important, the Zermelo-Fraenkel theory, which we are referring to here, is but one of the many axiomatic systems which Set Theory considers worth of study. Other systems expunge infinite sets or enrich the set-universe with the aggregates sometimes called “hypersets.”
- 2.
Here we cannot pass under complete silence that a field named combinatorial set theory, boldly addressing infinite combinatorics, has been flourishing for decades.
- 3.
In analogy with the above-traced distinction between Set Theory and set theories, we will distinguish between Graph Theory as a broad, largely semiformal field of study and the many graph theories formalizing multiple facets of the overall field.
- 4.
Entities should not proliferate beyond necessity.
- 5.
The precise extent of the set to which we are restricting membership will be clarified very soon, with the definition of \(\mathsf{trCl}\left (\cdot \right )\).
- 6.
Throughout most of this book, the term graph means directed graph. However, in keeping with the standard graph-theoretic terminology, in Part II, we will use graphs for undirected graphs and digraphs for directed graphs.
References
Ackermann, W.: Die Widerspruchfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114, 305–315 (1937)
Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. Center for the Study of Language and Information, cop, Stanford (1988)
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1976)
Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25, 502–541 (1997)
Audrito, G., Tomescu, A.I., Wagner, S.G.: Enumeration of the adjunctive hierarchy of hereditarily finite sets. J. Log. Comput. 25 (3), 943–963 (2015)
Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41 (2), 182–208 (1986)
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics, 2nd edn. Springer, London (2008)
Barwise, J., Moss, L.: Hypersets. Math. Intell. 13 (4), 31–41 (1991)
Barwise, J., Moss, L.S.: Vicious Circles. CSLI Lecture Notes, Stanford (1996)
Behzad, M., Chartrand, G., Lesniak-Foster, L.: Graphs & Digraphs. Prindle, Weber & Schmidt (1979)
Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory. J. Autom. Reason. 22 (2), 341–378 (1999)
Bellè, D., Parlamento, F.: Truth in V for ∃ ∗ ∀ ∀-sentences is decidable. J. Symb. Log. 71 (4), 1200–1222 (2006)
Boyer, R.S., Lusk, E.L., McCune, W., Overbeek, R.A., Stickel, M.E., Wos, L.: Set theory in first-order logic: clauses for Gödel’s axioms. J. Autom. Reason. 2 (3), 287–327 (1986)
Brandstädt, A., Klembt, T., Lozin, V.V., Mosca, R.: On independent vertex sets in subclasses of apple-free graphs. Algorithmica 56, 383–393 (2010)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on Discrete Mathematics and Applications, vol. 3. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1999)
Brandstädt, A., Lozin, V.V., Mosca, R.: Independent sets of maximum weight in apple-free graphs. SIAM J. Discret. Math. 24, 239–254 (2010)
Burstall, R., Goguen, J.: Putting theories together to make specifications. In: Reddy, R. (ed.) Proceedings of 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, pp. 1045–1058 (1977)
Calligaris, P., Omodeo, E.G., Tomescu, A.I.: A proof-checking experiment on representing graphs as membership digraphs. In: Cantone, D., Asmundo, M.N. (eds.) CILC 2013, 28th Italian Conference on Computational Logic, CEUR Workshop Proceedings, Catania, pp. 227–233 (2013)
Cantone, D., Omodeo, E.G., Policriti, A.: Set Theory for Computing. From Decision Procedures to Declarative Programming with Sets. Texts and Monographs in Computer Science. Springer, New York (2001)
Cantone, D., Omodeo, E.G., Schwartz, J.T., Ursino, P.: Notes from the logbook of a proof-checker’s project. In: Dershowitz, N. (ed.) Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the Occasion of his 64th Birthday. Lecture Notes in Computer Science, vol. 2772, pp. 182–207. Springer (2003)
Casagrande, A., Omodeo, E.G.: Reasoning about connectivity without paths. In: Bistarelli, S., Formisano, A. (eds.) ICTCS’13, Fifteenth Italian Conference on Theoretical Computer Science, CEUR Workshop Proceedings, pp. 93–108 (2014)
Casagrande, A., Piazza, C., Policriti, A.: Is hyper-extensionality preservable under deletions of graph elements? Electron. Notes Theor. Comput. Sci. 322, 103–118 (2016)
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164 (1), 51–229 (2006)
Cohen, P.J.: Set Theory and the Continuum Hypothesis. Mathematics Lecture Note Series. W. A. Benjamin, Inc., Reading, MA(1966)
D’Agostino, G., Omodeo, E.G., Policriti, A., Tomescu, A.I.: Mapping sets and hypersets into numbers. Fundam. Inform. 140 (3–4), 307–328 (2015)
Davis, M.: Applied Nonstandard Analysis. John Wiley & Sons, New York (1977)
Davis, M., Schonberg, E. (eds.): From Linear Operators to Computational Biology: Essays in Memory of Jacob T. Schwartz. Springer (2012)
Dewar, R.: SETL and the Evolution of Programming. In: [27, pp. 39–46] (2012)
Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: {log}: A language for programming in logic with finite sets. J. Log. Program. 28 (1), 1–44 (1996)
Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimulation equivalence. Theor. Comput. Sci. 311 (1–3), 221–256 (2004)
Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic programming. ACM Trans. Program. Lang. Syst. 22 (5), 861–931 (2000)
Dyer, M., Frieze, A., Jerrum, M.: Approximately counting Hamilton paths and cycles in dense graphs. SIAM J. Comput. 27 (5), 1262–1272 (1998)
Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Hartcourt/Academic Press, Burlington (2001)
Erdős, P., Moser, L.: On the representation of directed graphs as unions of orderings. Publ. Math. Inst. Hung. Acad. Sci. Ser. A 9, 125–132 (1964)
Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8, 128–140 (1741)
Felgner, U.: Comparison of the axioms of local and universal choice. Fundamenta mathematicae 71 (1), 43–62 (1971)
Ferro, A., Omodeo, E., Schwartz, J.: Decision procedures for some fragments of set theory. In: Bibel, W., Kowalski, R. (eds.) Proceedings of the 5th Conference on Automated Deduction. LNCS, vol. 87, pp. 88–96. Springer, Berlin/New York (1980)
Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions. Commun. Pure Applied Math. 33 (5), 599–608 (1980)
Formisano, A., Omodeo, E.G.: Theory-specific automated reasoning. In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming: Achievements of the Italian Association for Logic Programming, GULP. Lecture Notes in Computer Science, vol. 6125, pp. 37–63. Springer, Berlin/Heidelberg (2010)
Forti, M., Honsell, F.: Set theory with free construction principles. Annali Scuola Normale Superiore di Pisa, Classe di Scienze IV (10), 493–522 (1983)
Fraenkel, A.A.: The notion of “definite” and the independence of the axiom of choice. In: [46, pp. 284–289]. (The original publication, in German language, is of 1922)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest partition problems. J. Autom. Reason. 31 (1), 73–103 (2003)
Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. Proc. Natl. Acad. Sci. U.S.A. 24 (12), 556–557 (1938)
Harary, F., Palmer, E.: Graphical Enumeration. Academic Press, New York (1973)
van Heijenoort, J. (ed.): From Frege to Gödel – A Source Book in Mathematical Logic, 1879–1931, 3rd printing edn. Source books in the history of the sciences. Harvard University Press (1977)
Hendry, G., Vogler, W.: The square of a connected S(K 1, 3)-free graph is vertex pancyclic. J. Graph Theory 9 (4), 535–537 (1985)
Hopcroft, J.E.: An nlogn algorithm for minimizing states in a finite automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196. Academic Press, New York (1971)
Howorka, E.: On metric properties of certain clique graphs. J. Comb. Theory Ser. B 27 (1), 67–74 (1979)
Jech, T.: Set Theory. Springer Monographs in Mathematics, 3rd Millennium edn. Springer, Berlin/Heidelberg (2003)
Keller, J.P., Paige, R.: Program derivation with verified transformations – a case study. Commun. Pure Appl. Math. 48 (9–10), 1053–1113 (1995). Special issue in honor of J.T. Schwartz
Kirby, L.: A hierarchy of hereditarily finite sets. Arch. Math. Log. 47 (2), 143–157 (2008)
König, D.: Theorie der endlichen und unendlichen graphen. Akademische Verlagsgesellschaft Leipzig (1936)
Kunen, K.: Set Theory. Studies in Logic. College Publications (2011)
Levin, D.A., Peresand, Y., Wilmer, E.: Markov Chains and Mixing Times. AMS, Providence (2009)
Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs. Comput. Math. Appl. 30 (8), 75–83 (1995)
Lisitsa, A., Sazonov, V.: Linear ordering on graphs, anti-founded sets and polynomial time computability. Theor. Comput. Sci. 224, 173–213 (1999)
Lovász, L., Plummer, M.D.: Matching Theory. North-Holland Mathematics Studies. North-Holland/Amsterdam, New York (1986). Includes indexes
Lozin, V.V., Milanič, M., Purcell, C.: Graphs without large apples and the maximum weight independent set problem. Graphs Comb. 30 (2), 395–410 (2014)
Matthews, M.M., Sumner, D.P.: Hamiltonian Results in K 1, 3-Free Graphs. J. Graph Theory 8, 139–146 (1984)
Melançon, G., Philippe, F.: Generating connected acyclic digraphs uniformly at random. Inf. Process. Lett. 90 (4), 209–213 (2004)
Melançon, G., Dutour, I., Bousquet-Mélou, M.: Random generation of directed acyclic graphs. In: Nesetril, J., Noy, M., Serra, O. (eds.) Euroconference on Combinatorics, Graph Theory and Applications (Comb01). Electronic Notes in Discrete Mathematics, vol. 10, pp. 202–207 (2001)
Milanič, M., Rizzi, R., Tomescu, A.I.: Set graphs. II. Complexity of set graph recognition and similar problems. Theor. Comput. Sci. 547, 70–81 (2014)
Milanič, M., Tomescu, A.I.: Set graphs. I. Hereditarily finite sets and extensional acyclic orientations. Discret. Appl. Math. 161 (4–5), 677–690 (2013)
Milanič, M., Tomescu, A.I.: Set graphs. IV. Further connections with claw-freeness. Discret. Appl. Math. 174, 113–121 (2014)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28 (3), 284–304 (1980)
Mostowski, A.: An undecidable arithmetical statement. Fund. Math. 36, 143–164 (1949)
von Neumann, J.: Zur Einführung der trasfiniten Zahlen. Acta Sci. Math. (Szeged) 1 (4–4), 199–208 (1922–23). Available in English translation in [46, pp. 346–354]
von Neumann, J.: Über eine Widerspruchsfreiheitsfrage in der axiomatischen Mengenlehre. J. für die reine und angewandte Mathematik (160), 227–241, reprinted in [70, pp. 494–508] (1929)
von Neumann, J.: Collected Works, vol. I: Logic, Theory of Sets and Quantum Mechanics. Pergamon Press, New York (1961)
Olariu, S.: The strong perfect graph conjecture for pan-free graphs. J. Comb. Theory Ser. B 47, 187–191 (1989)
Omodeo, E.G., Cantone, D., Policriti, A., Schwartz, J.T.: A computerized referee. In: Stock, O., Schaerf, M. (eds.) Reasoning, Action and Interaction in AI Theories and Systems – Essays Dedicated to Luigia Carlucci Aiello. LNAI, vol. 4155, pp. 117–139. Springer (2006)
Omodeo, E.G., Parlamento, F., Policriti, A.: Decidability of ∃ ∗ ∀-sentences in membership theories. Math. Log. Q. 42 (1), 41–58 (1996)
Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability. J. Symb. Logic 75 (2), 459–480 (2010)
Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: decidability. J. Symb. Logic 77 (3), 896–918 (2012)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Statements of ill-founded infinity in set theory. In: Cégielski, P. (ed.) Studies in Weak Arithmetics. Lecture Notes, vol. 196, pp. 173–199. Center for the Study of Language and Information, Stanford University (2009)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Infinity, in short. J. Logic Comput. 22 (6), 1391–1403 (2012)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Set-syllogistics meet combinatorics. Math. Struct. Comput. Sci. 27 (2), 296–310 (2017)
Omodeo, E.G., Schwartz, J.T.: A ‘theory’ mechanism for a proof-verifier based on first-order set theory. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II. Lecture Notes in Computer Science, vol. 2408, pp. 214–230. Springer (2002)
Omodeo, E.G., Tomescu, A.I.: Set graphs. III. Proof Pearl: claw-free graphs mirrored into transitive hereditarily finite sets. J. Automat. Reason. 52 (1), 1–29 (2014)
Omodeo, E.G., Tomescu, A.I.: Set graphs. V. On representing graphs as membership digraphs. J. Log. Comput. 25 (3), 899–919 (2015)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16 (6), 973–989 (1987)
Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function coarsest partition problem. Theoret. Comput. Sci. 40, 67–84 (1985)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages of set theory. IX. Unsolvability of the decision problem for a restricted subclass of the Δ 0-formulas in set theory. Commun. Pure Appl. Math. XLI, 221–251 (1988)
Parlamento, F., Policriti, A.: The logically simplest form of the infinity axiom. Proc. Am. Math. Soc. 103 (1), 274–276 (1988)
Parlamento, F., Policriti, A.: Note on “The logically simplest form of the infinity axiom”. Proc. Am. Math. Soc. 108 (1), 285–286 (1990)
Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages of set theory: XIII. Model graphs, reflection and decidability. J. Automat. Reason. 7 (2), 271–284 (1991)
Parlamento, F., Policriti, A.: Expressing infinity without foundation. J. Symb. Logic 56 (4), 1230–1235 (1991)
Parlamento, F., Policriti, A.: Undecidability results for restricted universally quantified formulae of set theory. Commun. Pure Appl. Math. XLVI (1), 57–73 (1993)
Paulson, L.C.: A simple formalization and proof for the mutilated chess board. Logic J. IGPL 9 (3), 499–509 (2001)
Peddicord, R.: The number of full sets with n elements. Proc. Am. Math. Soc. 13, 825–828 (1962)
Piazza, C., Policriti, A.: Ackermann encoding, bisimulations, and OBDDs. Theory Pract. Logic Programm. 4 (5–6), 695–718 (2004)
Policriti, A., Tomescu, A.I.: Counting extensional acyclic digraphs. Inf. Process. Lett. 111 (3), 787–791 (2011)
Policriti, A., Tomescu, A.I.: Markov chain algorithms for generating sets uniformly at random. Ars Math. Contemp. 6 (57–68) (2013)
Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744 (1918)
Quaife, A.: Automated deduction in von Neumann-Bernays-Gödel set theory. J. Autom. Reason. 8 (1), 91–147 (1992)
Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930). Read on 13 Dec 1928
Rizzi, R., Tomescu, A.I.: Ranking, unranking and random generation of extensional acyclic digraphs. Inf. Process. Lett. 113 (5–6), 183–187 (2013)
Robinson, R.M.: The theory of classes, a modification of von Neumann’s system. J. Symb. Logic 2, 29–36 (1937)
Robinson, R.W.: Enumeration of acyclic digraphs. In: Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and its Applications. University of North Carolina, Chapel Hill (1970)
Robinson, R.W.: Counting labeled acyclic digraphs. In: Harary, F. (ed.) New Directions in the Theory of Graphs, pp. 239–273. Academic Press, New York (1973)
Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discret. Math. 29 (1), 53–76 (1980)
Schwartz, J., Dewar, R., Dubinsky, E., Schonberg, E.: Programming with Sets: An Introduction to SETL. Texts and Monographs in Computer Science. Springer, New York (1986)
Schwartz, J.T., Cantone, D., Omodeo, E.G.: Computational Logic and Set Theory. Springer (2011). Foreword by Martin Davis
Steinsky, B.: Efficient coding of labeled directed acyclic graphs. Soft Comput. 7, 350–356 (2003)
Steinsky, B.: Enumeration of labelled chain graphs and labelled essential directed acyclic graphs. Discret. Math. 270 (1–3), 266–277 (2003)
Sumner, D.: Graphs with 1-factors. Proc. Am. Math. Soc. 42, 8–12 (1974)
Tarski, A.: Sur les ensembles fini. Fundamenta Mathematicae VI, 45–95 (1924)
Tomescu, A.I.: A simpler proof for vertex-pancyclicity of squares of connected claw-free graphs. Discret. Math. 312 (15), 2388–2391 (2012)
Vergnas, M.L.: A note on matchings in graphs. Cahiers Centre Etudes Rech. Opér. 17, 257–260 (1975)
Wagner, S.: Asymptotic enumeration of extensional acyclic digraphs. In: Proceedings of the ANALCO12 Meeting on Analytic Algorithmics and Combinatorics, pp. 1–8 (2012)
West, D.B.: Introduction to Graph Theory. Prentice-Hall, New Jersey (2001)
Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. In: [46, pp. 199–215] (1908)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Omodeo, E.G., Policriti, A., Tomescu, A.I. (2017). Introduction. In: On Sets and Graphs. Springer, Cham. https://doi.org/10.1007/978-3-319-54981-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-54981-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54980-4
Online ISBN: 978-3-319-54981-1
eBook Packages: Computer ScienceComputer Science (R0)