Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hilbert-Style Axiomatization for Hybrid XPath with Data

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10021))

Included in the following conference series:

Abstract

In this paper we introduce a sound and complete axiomatization for XPath with data constraints extended with hybrid operators. First, we define \(\text {HXPath} _=({{\uparrow }{\downarrow }})\), an extension of vertical XPath with nominals and the hybrid operator @. Then, we introduce an axiomatic system for \(\text {HXPath} _=({{\uparrow }{\downarrow }})\), and we prove it is complete with respect to the class of abstract data trees, i.e., data trees in which data values are abstracted as equivalence relations. As a corollary, we also obtain completeness with respect to the class of concrete data trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abriola, S., Descotte, M., Fervari, R., Figueira, S.: Axiomatizations for downward XPath on data trees. CoRR, abs/1605.04271 (2016)

    Google Scholar 

  2. Abriola, S., Descotte, M., Figueira, S.: Model theory of XPath on data trees. Part II: Binary bisimulation and definability. Information and Computation (to appear). http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf

  3. Abriola, S., Descotte, M.E., Figueira, S.: Definability for downward and vertical XPath on data trees. In: Kohlenbach, U., Barceló, P., Queiroz, R. (eds.) WoLLIC 2014. LNCS, vol. 8652, pp. 20–35. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44145-9_2

    Google Scholar 

  4. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2006)

    Google Scholar 

  5. Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite data trees. In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, pp. 32:1–32:16 (2016)

    Google Scholar 

  6. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. J. ACM 55(2), 1–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. 41(1), 1–54 (2008)

    Article  Google Scholar 

  8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Studia Logica 84(2), 277–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: van Benthem, J., Blackburn, P., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–84. Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 1–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments. J. Appl. Logic 8(2), 153–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. ten Cate, B., Marx, M.: Axiomatizing the logical core of XPath 2.0. Theory Comput. Syst. 44(4), 561–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clark, J., DeRose, S.: XML path language (XPath). Website. W3C Recommendation (1999). http://www.w3.org/TR/xpath

  15. Figueira, D.: Reasoning on words and trees with data. Ph.D. thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2010)

    Google Scholar 

  16. Figueira, D.: Decidability of downward XPath. ACM Trans. Comput. Logic 13(4), 34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figueira, D., Figueira, S., Areces, C.: Basic model theory of XPath on data trees. In: International Conference on Database Theory, pp. 50–60 (2014)

    Google Scholar 

  18. Figueira, D., Figueira, S., Areces, C.: Model theory of XPath on data trees. Part I: Bisimulation and characterization. J. Artif. Intell. Res. 53, 271–314 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath. In: 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), pp. 93–104 (2011)

    Google Scholar 

  20. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kostylev, E., Reutter, J., Vrgoč, D.: Xpath for DL ontologies. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 1525–1531. AAAI Press (2015)

    Google Scholar 

  22. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24741-8_28

    Chapter  Google Scholar 

  23. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. ACM SIGMOD Rec. 34(2), 41–46 (2005)

    Article  Google Scholar 

  24. Sattler, U., Vardi, M.Y.: The hybrid \({\mu }\)-calculus. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 76–91. Springer, Heidelberg (2001). doi:10.1007/3-540-45744-5_7

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant ANPCyT-PICT-2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)” and the Laboratoire International Associé “INFINIS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Areces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Areces, C., Fervari, R. (2016). Hilbert-Style Axiomatization for Hybrid XPath with Data. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48758-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48757-1

  • Online ISBN: 978-3-319-48758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics