Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computer Algebra in High-Energy Physics (Invited Talk)

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

  • 807 Accesses

Abstract

Paper and pencil are no longer sufficient to obtain the predictions mandated by modern colliders. This is due to the required precision, the number of final-state particles, and also the number of particles in the model. More than any other collider, the Large Hadron Collider (LHC) at CERN has to rely on precise theoretical predictions to even look in the right place, let alone test measurements at a quantitative level. The methods of perturbative quantum field theory, Feynman diagrams, have not changed much over time, and their application remains a formidable, though fully algorithmic, calculational problem. This contribution focusses on how Computer Algebra plays an essential role in this programme and shows by a few examples how the methods are actually implemented in a Computer Algebra system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Actis, S., Denner, A., Hofer, L., Lang, J.-N., Scharf, A., Uccirati, S.: RECOLA: REcursive Computation of One-Loop Amplitudes. arXiv:1605.01090

  2. Alloul, A., Christensen, N., Degrande, C., Duhr, C., Fuks, B.: FeynRules 2.0 - a complete toolbox for tree-level phenomenology. Comp. Phys. Comm. 185, 2250 (2014). arXiv:1310.1921

    Article  Google Scholar 

  3. Alwall, J., et al.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014). arXiv:1405.0301

    Article  Google Scholar 

  4. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., Stelzer, T.: MadGraph 5: going beyond. JHEP 1106, 128 (2011). arXiv:1106.0522

    Article  MATH  Google Scholar 

  5. Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Complete tenth-order QED contribution to the muon g-2. Phys. Rev. Lett. 109, 111808 (2012). arXiv:1205.5370

    Article  Google Scholar 

  6. Bauberger, S., Böhm, M.: Simple one-dimensional integral representations for two loop selfenergies: the Master diagram. Nucl. Phys. B 445, 25 (1995). arXiv:hep-ph/9501201

    Google Scholar 

  7. Berends, F., Giele, W.: On the construction of scattering amplitudes for spinning massless particles. Nucl. Phys. B 507, 157 (1997). arXiv:hep-th/9704008

    Google Scholar 

  8. Bern, Z., Dixon, L., Febres Cordero, F., Höche, S., Ita, H., Kosower, D., Maître, D., Ozeren, K.: The BlackHat library for one-loop amplitudes. J. Phys. Conf. Ser. 523, 012051 (2014). arXiv:1310.2808

    Article  Google Scholar 

  9. Bevilacqua, G., Czakon, M., Garzelli, M., van Hameren, A., Kardos, A., Papadopoulos, C., Pittau, R., Worek, M.: Helac-NLO. Comp. Phys. Comm. 184, 986 (2013). arXiv:1110.1499

    Article  Google Scholar 

  10. Bollini, C., Giambiagi, J.J.: Dimensional Renormalization. Il Nuovo Cimento B 12, 20–26 (1972)

    Google Scholar 

  11. Borowka, S., Heinrich, G., Jones, S., Kerner, M., Schlenk, J., Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Comp. Phys. Comm. 196, 470 (2015). arXiv:1502.06595

    Google Scholar 

  12. Carrazza, S., Ellis, R.K., Zanderighi, G.: QCDLoop: a comprehensive framework for one-loop scalar integrals. arXiv:1605.03181

  13. Cascioli, F., Höche, S., Krauss, F., Moretti, N., Pozzorini, S., Schönherr, M., Siegert, F., Maierhöfer, P.: Next-to-leading order simulations with Sherpa+OpenLoops. PoS LL 2014, 022 (2014)

    Google Scholar 

  14. Cornwall, J., Levin, D., Tiktopoulos, G.: Derivation of gauge invariance from high-energy unitarity bounds on the \(s\) matrix. Phys. Rev. D 10, 1145 (1974)

    Article  Google Scholar 

  15. Cullen, G., et al.: GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond. Eur. Phys. J. C 74(8), 3001 (2014). arXiv:1404.7096

    Article  Google Scholar 

  16. Denner, A., Dittmaier, S., Hofer, L.: Collier: a Fortran-based Complex One-Loop LIbrary in Extended Regularizations. arXiv:1604.06792

  17. Denner, A., Weiglein, G., Dittmaier, S.: Application of the background field method to the electroweak standard model. Nucl. Phys. B 440, 95 (1995). arXiv:hep-ph/9410338

    Google Scholar 

  18. Draggiotis, P., Garzelli, M., Papadopoulos, C., Pittau, R.: Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 0904, 072 (2010). arXiv:0903.0356. Garzelli, M., Malamos, I., Pittau, R.: Feynman rules for the rational part of the Electroweak 1-loop amplitudes. JHEP 1001, 040 (2009). arXiv:0910.3130

    Google Scholar 

  19. Ellis, R.K., Giele, W., Kunszt, Z., Melnikov, K., Zanderighi, G.: One-loop amplitudes for \(W^+\) 3 jet production in hadron collisions. JHEP 0901, 012 (2009). arXiv:0810.2762

    Article  Google Scholar 

  20. Gajdosik, T., Pasukonis, J.: Non Linear Gauge Fixing for FeynArts. arXiv:0710.1999

  21. Gleisberg, T., Hoeche, S., Krauss, F., Schönherr, M., Schumann, S., Siegert, F., Winter, J.: Event generation with SHERPA 1.1. JHEP 0902, 007 (2009). arXiv:0811.4622

    Article  Google Scholar 

  22. Hahn, T.: Generating Feynman diagrams and amplitudes with FeynArts 3. Comp. Phys. Comm. 140, 418 (2001). arXiv:hep-ph/0012260

    Google Scholar 

  23. Hahn, T.: A Mathematica interface for FormCalc-generated code. Comp. Phys. Comm. 178, 217 (2008). arXiv:hep-ph/0611273

    Article  Google Scholar 

  24. Hahn, T., Illana, J.I.: Excursions into FeynArts and FormCalc. Nucl. Phys. Proc. Suppl. 160, 101 (2006). arXiv:hep-ph/0607049

    Article  Google Scholar 

  25. Hahn, T., Lang, P.: FeynEdit: a tool for drawing Feynman diagrams. Comp. Phys. Comm. 179, 931 (2008). arXiv:0711.1345

    Google Scholar 

  26. Hahn, T., Paßehr, S.: Implementation of the \(\cal O(\alpha _t^2)\) MSSM Higgs-mass corrections in FeynHiggs. arXiv:1508.00562

  27. Hahn, T., Pérez-Victoria, M.: Automated one-loop calculations in four and \(D\) dimensions. Comp. Phys. Comm. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  Google Scholar 

  28. van Hameren, A.: OneLOop: for the evaluation of one-loop scalar functions. Comp. Phys. Comm. 182, 2427 (2011). arXiv:1007.4716

  29. Harlander, R., Seidensticker, T., Steinhauser, M.: Complete corrections of \(\cal O(\alpha \alpha _s)\) to the decay of the Z boson into bottom quarks. Phys. Lett. B 426, 125 (1998). arXiv:hep-ph/9712228

    Article  Google Scholar 

  30. Kanaki, A., Papadopoulos, C.: HELAC: a Package to compute electroweak helicity amplitudes. Comp. Phys. Comm. 132, 306 (2000). arXiv:hep-ph/0002082

    Article  MATH  Google Scholar 

  31. Laporta, S.: High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087 (2000). arXiv:hep-ph/0102033

    MathSciNet  MATH  Google Scholar 

  32. Martin, S., Robertson, D.: TSIL: a program for the calculation of two-loop self-energy integrals. Comp. Phys. Comm. 174, 133 (2006). arXiv:hep-ph/0501132

    Article  MATH  Google Scholar 

  33. Nachtmann, O.: Phänomene und Konzepte der Elementarteilchenphysik, Vieweg (1986)

    Google Scholar 

  34. van Oldenborgh, G.J., Vermaseren, J.A.M.: New algorithms for one-loop integrals. Z. Phys. C 46, 425 (1990)

    Article  MathSciNet  Google Scholar 

  35. Ossola, G., Papadopoulos, C., Pittau, R.: Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl. Phys. B 763, 147 (2007). arXiv:hep-ph/0609007

    Article  MathSciNet  MATH  Google Scholar 

  36. Passarino, G., Veltman, M.: One Loop Corrections for e+ e\(-\) Annihilation Into mu+ mu\(-\) in the Weinberg Model. Nucl. Phys. B 160, 151 (1979)

    Article  Google Scholar 

  37. Semenov, A.: LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Version 3.2. Comp. Phys. Comm. 201, 167 (2016). arXiv:1412.5016

  38. Smirnov, V.: Feynman Integral Calculus. Springer, Berlin (2006)

    Google Scholar 

  39. Staub, F.: SARAH 3.2: Dirac Gauginos, UFO output, and more. Comp. Phys. Comm. 184, 1792 (2013). arXiv:1207.0906

    Google Scholar 

  40. Ueda, T., Vermaseren, J.: Recent developments on FORM. J. Phys. Conf. Ser. 523, 012047 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hahn, T. (2016). Computer Algebra in High-Energy Physics (Invited Talk). In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics