Abstract
Paper and pencil are no longer sufficient to obtain the predictions mandated by modern colliders. This is due to the required precision, the number of final-state particles, and also the number of particles in the model. More than any other collider, the Large Hadron Collider (LHC) at CERN has to rely on precise theoretical predictions to even look in the right place, let alone test measurements at a quantitative level. The methods of perturbative quantum field theory, Feynman diagrams, have not changed much over time, and their application remains a formidable, though fully algorithmic, calculational problem. This contribution focusses on how Computer Algebra plays an essential role in this programme and shows by a few examples how the methods are actually implemented in a Computer Algebra system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Actis, S., Denner, A., Hofer, L., Lang, J.-N., Scharf, A., Uccirati, S.: RECOLA: REcursive Computation of One-Loop Amplitudes. arXiv:1605.01090
Alloul, A., Christensen, N., Degrande, C., Duhr, C., Fuks, B.: FeynRules 2.0 - a complete toolbox for tree-level phenomenology. Comp. Phys. Comm. 185, 2250 (2014). arXiv:1310.1921
Alwall, J., et al.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014). arXiv:1405.0301
Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., Stelzer, T.: MadGraph 5: going beyond. JHEP 1106, 128 (2011). arXiv:1106.0522
Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Complete tenth-order QED contribution to the muon g-2. Phys. Rev. Lett. 109, 111808 (2012). arXiv:1205.5370
Bauberger, S., Böhm, M.: Simple one-dimensional integral representations for two loop selfenergies: the Master diagram. Nucl. Phys. B 445, 25 (1995). arXiv:hep-ph/9501201
Berends, F., Giele, W.: On the construction of scattering amplitudes for spinning massless particles. Nucl. Phys. B 507, 157 (1997). arXiv:hep-th/9704008
Bern, Z., Dixon, L., Febres Cordero, F., Höche, S., Ita, H., Kosower, D., Maître, D., Ozeren, K.: The BlackHat library for one-loop amplitudes. J. Phys. Conf. Ser. 523, 012051 (2014). arXiv:1310.2808
Bevilacqua, G., Czakon, M., Garzelli, M., van Hameren, A., Kardos, A., Papadopoulos, C., Pittau, R., Worek, M.: Helac-NLO. Comp. Phys. Comm. 184, 986 (2013). arXiv:1110.1499
Bollini, C., Giambiagi, J.J.: Dimensional Renormalization. Il Nuovo Cimento B 12, 20–26 (1972)
Borowka, S., Heinrich, G., Jones, S., Kerner, M., Schlenk, J., Zirke, T.: SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Comp. Phys. Comm. 196, 470 (2015). arXiv:1502.06595
Carrazza, S., Ellis, R.K., Zanderighi, G.: QCDLoop: a comprehensive framework for one-loop scalar integrals. arXiv:1605.03181
Cascioli, F., Höche, S., Krauss, F., Moretti, N., Pozzorini, S., Schönherr, M., Siegert, F., Maierhöfer, P.: Next-to-leading order simulations with Sherpa+OpenLoops. PoS LL 2014, 022 (2014)
Cornwall, J., Levin, D., Tiktopoulos, G.: Derivation of gauge invariance from high-energy unitarity bounds on the \(s\) matrix. Phys. Rev. D 10, 1145 (1974)
Cullen, G., et al.: GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond. Eur. Phys. J. C 74(8), 3001 (2014). arXiv:1404.7096
Denner, A., Dittmaier, S., Hofer, L.: Collier: a Fortran-based Complex One-Loop LIbrary in Extended Regularizations. arXiv:1604.06792
Denner, A., Weiglein, G., Dittmaier, S.: Application of the background field method to the electroweak standard model. Nucl. Phys. B 440, 95 (1995). arXiv:hep-ph/9410338
Draggiotis, P., Garzelli, M., Papadopoulos, C., Pittau, R.: Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 0904, 072 (2010). arXiv:0903.0356. Garzelli, M., Malamos, I., Pittau, R.: Feynman rules for the rational part of the Electroweak 1-loop amplitudes. JHEP 1001, 040 (2009). arXiv:0910.3130
Ellis, R.K., Giele, W., Kunszt, Z., Melnikov, K., Zanderighi, G.: One-loop amplitudes for \(W^+\) 3 jet production in hadron collisions. JHEP 0901, 012 (2009). arXiv:0810.2762
Gajdosik, T., Pasukonis, J.: Non Linear Gauge Fixing for FeynArts. arXiv:0710.1999
Gleisberg, T., Hoeche, S., Krauss, F., Schönherr, M., Schumann, S., Siegert, F., Winter, J.: Event generation with SHERPA 1.1. JHEP 0902, 007 (2009). arXiv:0811.4622
Hahn, T.: Generating Feynman diagrams and amplitudes with FeynArts 3. Comp. Phys. Comm. 140, 418 (2001). arXiv:hep-ph/0012260
Hahn, T.: A Mathematica interface for FormCalc-generated code. Comp. Phys. Comm. 178, 217 (2008). arXiv:hep-ph/0611273
Hahn, T., Illana, J.I.: Excursions into FeynArts and FormCalc. Nucl. Phys. Proc. Suppl. 160, 101 (2006). arXiv:hep-ph/0607049
Hahn, T., Lang, P.: FeynEdit: a tool for drawing Feynman diagrams. Comp. Phys. Comm. 179, 931 (2008). arXiv:0711.1345
Hahn, T., Paßehr, S.: Implementation of the \(\cal O(\alpha _t^2)\) MSSM Higgs-mass corrections in FeynHiggs. arXiv:1508.00562
Hahn, T., Pérez-Victoria, M.: Automated one-loop calculations in four and \(D\) dimensions. Comp. Phys. Comm. 118, 153 (1999). arXiv:hep-ph/9807565
van Hameren, A.: OneLOop: for the evaluation of one-loop scalar functions. Comp. Phys. Comm. 182, 2427 (2011). arXiv:1007.4716
Harlander, R., Seidensticker, T., Steinhauser, M.: Complete corrections of \(\cal O(\alpha \alpha _s)\) to the decay of the Z boson into bottom quarks. Phys. Lett. B 426, 125 (1998). arXiv:hep-ph/9712228
Kanaki, A., Papadopoulos, C.: HELAC: a Package to compute electroweak helicity amplitudes. Comp. Phys. Comm. 132, 306 (2000). arXiv:hep-ph/0002082
Laporta, S.: High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087 (2000). arXiv:hep-ph/0102033
Martin, S., Robertson, D.: TSIL: a program for the calculation of two-loop self-energy integrals. Comp. Phys. Comm. 174, 133 (2006). arXiv:hep-ph/0501132
Nachtmann, O.: Phänomene und Konzepte der Elementarteilchenphysik, Vieweg (1986)
van Oldenborgh, G.J., Vermaseren, J.A.M.: New algorithms for one-loop integrals. Z. Phys. C 46, 425 (1990)
Ossola, G., Papadopoulos, C., Pittau, R.: Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl. Phys. B 763, 147 (2007). arXiv:hep-ph/0609007
Passarino, G., Veltman, M.: One Loop Corrections for e+ e\(-\) Annihilation Into mu+ mu\(-\) in the Weinberg Model. Nucl. Phys. B 160, 151 (1979)
Semenov, A.: LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Version 3.2. Comp. Phys. Comm. 201, 167 (2016). arXiv:1412.5016
Smirnov, V.: Feynman Integral Calculus. Springer, Berlin (2006)
Staub, F.: SARAH 3.2: Dirac Gauginos, UFO output, and more. Comp. Phys. Comm. 184, 1792 (2013). arXiv:1207.0906
Ueda, T., Vermaseren, J.: Recent developments on FORM. J. Phys. Conf. Ser. 523, 012047 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Hahn, T. (2016). Computer Algebra in High-Energy Physics (Invited Talk). In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-45641-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45640-9
Online ISBN: 978-3-319-45641-6
eBook Packages: Computer ScienceComputer Science (R0)