Abstract
Symbolic-numeric algorithms for solving multichannel scattering and eigenvalue problems of the waveguide or tunneling type for systems of ODEs of the second order with continuous and piecewise continuous coefficients on an axis are presented. The boundary-value problems are formulated and discretized using the FEM on a finite interval with interpolating Hermite polynomials that provide the required continuity of the derivatives of the approximated solutions. The accuracy of the approximate solutions of the boundary-value problems, reduced to a finite interval, is checked by comparing them with the solutions of the original boundary-value problems on the entire axis, which are calculated by matching the fundamental solutions of the ODE system. The efficiency of the algorithms implemented in the computer algebra system Maple is demonstrated by calculating the resonance states of a multichannel scattering problem on the axis for clusters of a few identical particles tunneling through Gaussian barriers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0: new version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach. Comput. Phys. Commun. 185, 3341–3343 (2014)
Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Góźdź, A., Hai, L.L., Rostovtsev, V.A.: Symbolic-numerical solution of boundary-value problems with self-adjoint second-order differential equation using the finite element method with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Heidelberg (2014)
Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Ulziibayar, V., Vinitsky, S.I., Derbov, V.L., Gozdz, A., Rostovtsev, V.A.: Symbolic-numeric solution of boundary-value problems for the Schrodinger equation using the finite element method: scattering problem and resonance states. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 182–197. Springer, Heidelberg (2015)
Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: Program KANTBP 4M for solving boundary-value problems for systems of ordinary differential equations of the second order (2015). http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/
Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Rostovtsev, V., Hai, L.L., Derbov, V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunctions: tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442. Springer, Heidelberg (2013)
Harrison, P.: Quantum Well, Wires and Dots. Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, New York (2005)
Krassovitskiy, P.M., Pen’kov, F.M.: Contribution of resonance tunneling of molecule to physical observables. J. Phys. B: At. Mol. Opt. Phys. 47, 225210 (2014)
Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Heidelberg (2014)
Siegert, A.J.F.: On the derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56, 750–752 (1939)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Gusev, A.A., Gerdt, V.P., Hai, L.L., Derbov, V.L., Vinitsky, S.I., Chuluunbaatar, O. (2016). Symbolic-Numeric Algorithms for Solving BVPs for a System of ODEs of the Second Order: Multichannel Scattering and Eigenvalue Problems. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-45641-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45640-9
Online ISBN: 978-3-319-45641-6
eBook Packages: Computer ScienceComputer Science (R0)