Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Diagnostic reasoning is an activity aimed at finding the causes of incorrect behavior of various technological systems. In order to perform diagnosis, a typical diagnostic system should be equipped with the expert knowledge of the domain and statistical evidence of former failures. More advanced solution combines model-based reasoning (GlossaryTerm

MBR

) and abduction. It is assumed that a model of the system under investigation is specified. Such a model allows us to simulate the normal behavior of the system. It can also be used to detect incorrect behavior and perform sophisticated reasoning in order to identify potential causes of the observed failure. Such potential causes form a set of possible diagnoses. In this chapter, formal bases for the so-called model-based diagnostic reasoning paradigm are presented and application examples are discussed in detail. A method of modeling system behavior with the use of causal graphs is put forward. Then, a systematic method for discovering all the so-called conflict sets (disjunctive conceptual faults) is described. Such conflict sets describe sets of elements in such a manner that in order to explain the observed misbehavior at least one of them must be faulty. By selecting and removing such elements from all conflicts sets – for each conflict set one such element – the proper candidate diagnoses are generated. An example of the application of the proposed methods to the three-tank dynamic system is presented and some bases for on-line generation of diagnoses for dynamic systems are outlined, together with some theorems. The chapter introduces an easy and self-contained material being an introduction to modern model-based diagnosis, covering static and dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AB:

abnormal behavior

AI:

artificial intelligence

CBR:

case-based reasoning

CG:

causal graph

DCF:

disjunctive conceptual fault

KB:

knowledge base

KE:

knowledge engineering

MBR:

model-based reasoning

OBS:

observations

PCS:

potential conflict structure

SD:

system description

References

  1. R. Davis, W. Hamscher: Model-based reasoning: Troubleshooting. In: Readings in Model-Based Diagnosis, ed. by W. Hamscher, L. Console, J. deKleer (Morgan Kaufmann, San Mateo 1992) pp. 3–24

    Google Scholar 

  2. W. Hamscher, L. Console, J. de Kleer (Eds.): Readings in Model-Based Diagnosis (Morgan Kaufmann, San Mateo 1992)

    Google Scholar 

  3. J. Korbicz, J.M. Kościelny, Z. Kowalczuk, W. Cholewa (Eds.): Fault Diagnosis. Models, Artificial Intelligence, Applications (Springer, Berlin 2004)

    MATH  Google Scholar 

  4. J. Liebowitz (Ed.): The Handbook of Applied Expert Systems (CRC, Boca Raton 1998)

    MATH  Google Scholar 

  5. D. Poole: Normality and faults in logic-based diagnosis, Proc. IJCAI-89, Detroit, ed. by N.S. Sridharan (Morgan Kaufmann, San Mateo 1989) pp. 1304–1310

    Google Scholar 

  6. A. Ligęza: Logical Foundations for Rule-Based Systems (Springer, Berlin, Heidelberg 2006)

    MATH  Google Scholar 

  7. M.R. Genesereth: The use of design descriptions in automated diagnosis, Artificial Intell. 24, 411–436 (1984)

    Article  Google Scholar 

  8. P. Fuster, A. Ligęza, J.A. Martin: Abductive diagnostic procedure based on an and/or/not graph for expected behaviour: Application to a gas turbine, Proc.10th Int. Congr. and Exhib. Cond. Monit. Diagn. Eng. Manag. (COMADEM), ed. by E. Jantunen, K. Holmberg, R.B.K. Rao (Valtion Teknillinen Tutkimuskeskus, Helsinki 1997) pp. 511–520

    Google Scholar 

  9. K. D. Althoff, E. Auriol, R. Barletta, M. Manago: A Review of Industrial Case-Based Tools, AI Intelligence Report (Oxford 1995)

    Google Scholar 

  10. C. Bach, D. Allemang: Case-based reasoning in diagnostic expert systems, Artificial Intell. Commun. 9(2), 49–52 (1996)

    Google Scholar 

  11. I. Watson: Applying Case-Based Reasoning: Techniques for Enterprise Systems (Morgan Kaufmann, San Francisco 1997)

    MATH  Google Scholar 

  12. P.M. Frank: Fault diagnosis in dynamic systems using analitical and knowledge-based redundancy – A survey and some new results, Automatica 26(3), 459–474 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.M. Frank: Analytical and qualitative model-based fault diagnosis – A survey and some new results, Eur. J. Control. 2, 6–28 (1996)

    Article  MATH  Google Scholar 

  14. R. Paton, P. Frank, R. Clark: Fault Diagnosis in Dymnamic Systems. Theory and Applications (Prentice Hall, USA 1989)

    Google Scholar 

  15. S.G. Tzafestas (Ed.): Knowledge-Based System Diagnosis, Supervision and Control (Plenum, New York, London 1989)

    Google Scholar 

  16. M.O. Cordier, P. Dague, M. Dumas, F. Lévy, J. Moutmain, M. Staroswiecki, L. Travé-Massuyès: AI and automatic control approaches of model-based diagnosis: Links and underlying hypotheses, Proc. 4th IFAC Symp. Fault Detection, Superv. Saf. Technical Process., ed. by A.M. Edelmayer (IFAC, Budapest 2000) pp. 274–279

    Google Scholar 

  17. M.O. Cordier, P. Dague, M. Dumas, F. Lévy, J. Moutmain, M. Staroswiecki, L. Travé-Massuyès: A comparative analysis of AI and control theory approaches to model-based diagnosis, Proc. 14th Eur. Conf. Artificial Intell. ECAI’2000, ed. by W. Horn (IOS, Berlin 2000) pp. 136–140

    Google Scholar 

  18. L. Travé-Massuyès: Bridges between diagnosis theories from control and AI perspectives. In: Intelligent Systems in Technical and medila Diagnosis, ed. by J. Korbicz, M. Kowal (Springer, Heidelberg 2014) pp. 3–28

    Chapter  Google Scholar 

  19. J. de Kleer, A.K. Mackworth, R. Reiter: Characterizing diagnoses and systems, Artificial Intell. 56, 197–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Davis: Diagnostic reasoning based on structure and behavior, Artificial Intell. 24, 347–410 (1984)

    Article  Google Scholar 

  21. J. de Kleer, B.C. Williams: Diagnosing multiple faults, Artificial Intell. 32, 97–130 (1987)

    Article  MATH  Google Scholar 

  22. R. Reiter: A theory of diagnosis from first principles, Artificial Intell. 32, 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Fuster-Parra: A Model for Causal Diagnostic Reasoning. Extended Inference Modes and Efficiency Problems, Ph.D. Thesis (Univ. Balearic Islands, Palma de Mallorca 1996)

    Google Scholar 

  24. A. Ligęza: A Note on Systematic Conflict Generation in CA-EN-Type Causal Structures, LAAS Report No. 96317 (LAAS, Toulouse 1996)

    Google Scholar 

  25. A. Ligęza, P. Fuster-Parra: AND/OR/NOT causal graphs – A model for diagnostic reasoning, Appl. Math. Comput. Sci. 7(1), 185–203 (1997)

    MathSciNet  MATH  Google Scholar 

  26. A. Ligęza, B. Górny: Systematic conflict generation in model-based diagnosis, Proc. 4th IFAC Symp. Fault Detection, Superv. Saf. Technical Process., Budapest, ed. by A.M. Edelmayer (IFAC, Budapest 2000) pp. 1103–1108

    Google Scholar 

  27. B. Górny, A. Ligęza: Model-based diagnosis of dynamic systems: Systematic conflict generation. In: Model-Based Reasoning, Scientific Discovery, Technological Innovations, Values, ed. by L. Magnani, N.J. Nersessian, C. Pizzi (Kluwer Academic, Dordrecht 2002) pp. 273–291

    Google Scholar 

  28. A. Ligęza: Selected methods of knowledge engineering in system diagnosis. In: Fault Diagnosis. Models, Artificial Intelligence, Applications, ed. by J. Korbicz, J.M. Kościelny, Z. Kowalczuk, W. Cholewa (Springer, Berlin 2004) pp. 633–668, Chap.16

    Google Scholar 

  29. A. Ligęza, J.M. Kościelny: A new approach to multiple fault diagnosis. Combination of diagnostic matrices, graphs, algebraic and rule-based models. The case of two-layer models, Int. J. Appl. Math. Comput. Sci. 18(4), 465–476 (2008)

    MATH  Google Scholar 

  30. B. Górny: Consistency-Based Reasoning in Model-Based Diagnosis, Ph.D. Thesis (AGH, Kraków 2001)

    Google Scholar 

  31. B. Pulido, C.A. González: An alternative approach to dependency-recording engines in consistency-based diagnosis. In: Artificial Intelligence: Methodology, Systems, and Applications, Lecture Notes in Artificial Intelligence, Vol. 1904, ed. by S.A. Cerri, D. Dochev (Springer, Berlin, Heidelberg 2000) pp. 111–121

    Google Scholar 

  32. B. Pulido, C.A. González: Possible conflicts: A compilation technique for consistency-based diagnosis, IEEE Trans. Systems Man and Cybernetics 34(5), 2192–2206 (2004)

    Article  Google Scholar 

  33. A. Ligęza: A constraint satisfaction framework for diagnostic problems. In: Diagnosis of Processes and Systems, ed. by Z. Kowalczuk (Pomeranian Science and Technology, Gdańsk 2009) pp. 255–262

    Google Scholar 

  34. A. Ligęza: Towards knowledge compilation for automated diagnosis: A qualitative, model-based approach with constraint programming. In: Advanced and Intelligent Computations in Diagnosis and Control, ed. by Z. Kowalczuk (Springer International, Switzerland 2016) pp. 355–367

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Ligęza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ligęza, A., Górny, B. (2017). Model-Based Diagnosis. In: Magnani, L., Bertolotti, T. (eds) Springer Handbook of Model-Based Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-30526-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30526-4_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30525-7

  • Online ISBN: 978-3-319-30526-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics