Abstract
This paper studies the design of information systems that leverage the use of both sensors and the social web, while addressing solutions for children in socially challenging situations. Socially challenging situations are defined as situations in which one experiences negative social pressure and, therefore, requires immediate help from trusted people. The authors first provide a glimpse into the rapid development in sensors and the rise in the importance of the social web. The paper then sheds light on the theme of socially challenging situations, which is elaborated through two workshops, and defines the core areas of focus. Further, a low-fidelity prototype for the safety of children is created and evaluated in a small-scale user experiment. The state of the current technology is then reviewed in order to visualize the possible practical realization of solutions. The outcomes of these steps provide interesting insights for possible future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, R., Michael, K., Michael, M.G., Aloudat, A.: Emerging forms of covert surveillance using GPS enabled devices. JCIT 13(2), 19–33 (2011)
Affectiva Q-Sensor. http://www.affdex.com
AIRS-Record your life app. http://play.google.com
Aggarwal, C., Abdelzaher, T.: Integrating sensors and social networks. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 379–412. Springer, Heidelberg (2011)
Archer, J., Cote, S.: Sex differences in aggressive behavior. In: Tremblay, R.E., Hartup, W.W., Archer, J. (eds.) Developmental Origins of Agg, pp. 425–443. Guilford, New York (2005)
Arizona State University. http://azte.technologypublisher.com/technology/9999
AutoSense Project. https://sites.google.com/site/autosenseproject/
AWARE. Android Mobile Context Instr. Framework. http://www.awareframework.com
Bakker, J., Pechenizkiy, M., Sidorova, N.: What’s your current stress level? detection of stress patterns from GSR sensor data. In: 11th ICDMW (2001)
Berry, D.M.: Critical Theory and the Digital. Bloomsbury Publishing, New York (2014)
Bristow, J.: Mobile Phones and Child Protection: How Far Should We Go? Report Spiked! Online (2006)
Cardone, G., Cirri, A., Corradi, A., Foschini, L., Maio, D.: MSF: an efficient mobile phone sensing framework, IJDSN (2013)
Chan, M., Estève, D., Fourniols, J.Y., Escriba, C., Campo, E.: Smart wearable systems: current status and future challenges. AI Med. 56(3), 137–156 (2012)
Cloak – Social Sense app. http://itunes.apple.com
Colunas, M.F.M., Fernandes, J.M.A., Oliveira, I.C., Cunha, J.P.S.: Droid jacket: using an android based smartphone for team monitoring. In: IWCMC (2011)
Conner, M.: Sensors empower “the Internet of things”, Technical Editor EDN Networks, 27 May 2010
Conover, J.: MYLO: Active Threat Recognition System. HoopBoom Inc., Asbury city (2012). http://www.hoopboom.com
Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity sensing in the wild: a field trial of ubifit garden. In: CHI. ACM (2008)
Curmi, F., Ferrario, M.A., Southern, J., Whittle, J.: HeartLink: open broadcast of live biometric data to social networks. In: CHI. ACM (2013)
Czeskis, A., Dermendjieva, I., Yapit, H., Borning, A., Friedman, B., Gill, B., Kohno, T.: Parenting from the pocket: value tensions and technical directions for secure and private parent teen mobile safety. In: 6th SOUPS (2010)
Efstratiou, C., Leontiadis, I., Picone, M., Rachuri, K.K., Mascolo, C., Crowcroft, J.: Sense and Sensibility in a pervasive world. In: 10th ICPC, pp. 406–424 (2012)
Endomondo. http://www.endomondo.com/
Fairgrieve, S., Falke, S.: Sensor web standards and the Internet of things. COM.Geo. ACM (2011)
Google Glass. http://www.google.com/glass/start/
Google, Project Glass – One day. http://www.youtube.com/watch?v=9c6W4CCU9M4
GottaSplit Application. http://gottasplit.com
Hellhammer, D., Wust, S., Kudielka, B.: Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34(2), 163–171 (2009)
Mobile social networking applications: Jabeur, N., Zeadally, S., B. Sayed, B. Comm. ACM 56, 71–79 (2013)
Jedrzejczyk, L., Price, B. A, Bandara, A.K., Nuseibeh, B.: On The impact of realtime feedback on users’ behaviour. In: Mobile Location Sharing Applications. SOUPS (2010)
Kraft, P., Drozd, F., Olsen, E.: ePsychology: designing theory-based health promotion interventions. Comm. AIS 24, 24 (2009)
Küpper, A., Bareth, U., Freese, B.: Geofencing and Background tracking – the next features in LBSs. In: INFORMATIK (2011)
Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A. T.: A survey of mobile phone sensing. Comm Mag 48, 9 (Sep), 140–150 (2010)
Lo, B., Thiemjarus, S., King, R., Yang, G.Z.: Body sensor network - a wireless sensor platform for pervasive healthcare monitoring. In: 3rd IICPC (2005)
Mattila, M.: Mobile technologies for child protection: a briefing note. In: UNICEF WCARO (2011)
Mian, S.Q., Teixeira, J., Koskivaara, E.: Open-source software implications in the competitive mobile platforms market. In: Skersys, T., Butleris, R., Nemuraite, L., Suomi, R. (eds.) Building the e-World Ecosystem. IFIP AICT, vol. 353, pp. 110–128. Springer, Heidelberg (2011)
Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe application, SenSys.ACM (2008)
Mobiloco Application. http://www.mobiloco.de
Morozov E.: To save everything, click here: technology, solutionism, and the urge to fix problems that don’t exist. Penguin, UK (2013)
My Mobile Witness. http://mymobilewitness.com
NaVee, FreeFamilyWatch. http://pdroms.de/android/freefamilywatch-android-application
Oinas-Kukkonen, H.: A foundation for the study of behavior change support systems. Pers. Ubiquit. Comput. 17(6), 1223–1235 (2013)
Oinas-Kukkonen, H., Oinas-Kukkonen, H.: Humanizing the Web, Change and Social Innovation. Palgrave Macmillan, Basingstoke (2013)
Pavel, D., Callaghan, V., Dey, A.K.: Supporting wellbeing through improving interactions and understanding in self-monitoring systems. In: AI and SE, vol. 11, pp. 408–433 (2012)
Picard, R.: Affective Computing. MIT Press, Cambridge (1997)
Polar Personal Trainer. http://www.polarpersonaltrainer.com
Project Salus: Research shows how computers can help combat bullying in schools. University of Kent (2012)
PSI Lab, Stress Measurement. http://psi.cse.tamu.edu/portfolio_item/stress-measurement/
Rawassizadeh, R., Tomitsch, M., Wac, K., Tjoa, A.M.: UbiqLog: a generic mobile phonebased lifelog framework. Per. Ubi. Comp. 17(4), 621–637 (2013)
Riedl, R., Kindermann, H., Auinger, A., Javor, A.: Technostress from a neurobiological perspective - system breakdown increases the stress hormone cortisol in computer users. BISE 4(2), 61–69 (2012)
Riedl, R.: On the biology of technostress: literature review and research agenda. SIGMIS Database 44(1), 18–55 (2013)
Riedl, R., Davis, F.D., Hevner, A.R.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. JAIS 15(10), 4 (2014)
Saranya, J., Selvakumar, J.: Implementation of children tracking system on android mobile terminals. In: ICCSP, pp. 961–965 (2013)
Sensor Networks. http://www.citysense.com
Sensors. http://what-is-a-sensor.com/
Shankar, P., Huang, Y.W., Castro, P., Nath, B., Iftode, L.: Crowds replace experts: building better LBS using mobile social network interactions, Perv. Comp, 20–29 (2012)
Stress Watch. http://www.stresswatch.com
Tams, S., Hill, K., Ortiz de Guinea, A., Thatcher, J., Grover, V.: NeuroIS—alternative or complement to existing methods? Illustrating the holistic effects of neuroscience and self-reported data in the context of technostress research. JAIS 15(10), 1 (2014)
Teixeira, J., Mian S.Q.: Open-source mobile software for sports: a new disruptive phenomenon in an Era of innovative devices. In: IADIS (2011)
The Stress Check. http://www.azumio.com
Wearable Comp. http://www.ethlife.ethz.ch/archive_articles/100308_stress_assistent_per/
Zickuhr, K. Survey of LBS. http://pewinternet.org/Reports/2013/Location.asp
360-Alert, Life Safety Technology. http://www.alert360.com
Acknowledgements
This work was carried out as part of the SEWEB research project on Sensors and the Social Web (40027/13, 40028/13). It was funded by TEKES, the Finnish Funding Agency for Technology and Innovation. The research was part of the OASIS research group of the Martti Ahtisaari Institute, University of Oulu.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mian, S.Q., Oinas-Kukkonen, H., Riekki, J. (2015). Leveraging the Usage of Sensors and the Social Web: Towards Systems for Socially Challenging Situations. In: Oinas-Kukkonen, H., Iivari, N., Kuutti, K., Öörni, A., Rajanen, M. (eds) Nordic Contributions in IS Research. SCIS 2015. Lecture Notes in Business Information Processing, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-21783-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-21783-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21782-6
Online ISBN: 978-3-319-21783-3
eBook Packages: Computer ScienceComputer Science (R0)