Abstract
Target tracking is the estimation of the state of one or multiple, usually moving, objects (targets) based on a time series of measurements. Widely addressed within the Bayesian statistical framework, it requires the modeling of the target state evolution and the measurement process. Information on the constraints posed by the context in which the target evolves and the measurement geometry is often available. This knowledge can be modeled, often in a statistical way, and integrated in the tracking filters to enhance their performance. This chapter presents several approaches to exploit different types of context knowledge and demonstrates context-enhanced tracking based on real and simulated data. Numerical results are given for the inclusion of sea-lanes in ship tracking and route propagation, and for road-map assisted air-to-ground radar tracking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It will be shown later that the Bayesian update scheme is not restricted to the propagation of conditional target state pdf’s.
References
D. Hall, S. McMullen, Mathematical Techniques in Multisensor Data Fusion (Artech House, 2004)
Y. Bar-Shalom, X.-R. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software (John Wiley & Sons, 2001)
S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (Artech House, Norwood, MA, 1999)
W. Koch, Tracking and Sensor Data Fusion—Methodological Framework and Selected Applications (Springer, Berlin, 2014)
W. Koch, On Bayesian tracking and data fusion: a tutorial introduction with examples. IEEE Aerosp. Electron. Syst. Mag. 25(7), 29–52 (2010)
A. Benavoli, L. Chisci, A. Farina, L. Timmoneri, G. Zappa, Knowledge-based system for multi-target tracking in a littoral environment. IEEE Trans. Aerosp. Electron. Syst. 42(3), 1100–1119 (2006)
E. Blasch, J. G. Herrero, L. Snidaro, J. Llinas, G. Seetharaman, K. Palaniappan, Overview of contextual tracking approaches in information fusion, in Proceedings of SPIE Geospatial InfoFusion III, 2013
C. Yang, M. Bakich, E. Blasch. Nonlinear constrained tracking of targets on roads, in 8th International Conference on Information Fusion, 2005
W. Koch, On exploiting ‘negative’ sensor evidence for target tracking and sensor data fusion, in Proceedings of 10th International Conference on Information Fusion (Quebec, Canada, 2007)
O. Loffeld, Estimationstheorie, Bd.1, Grundlagen und stochastische Konzepte. R. Oldenbourg Verlag GmbH, Muenchen, 1990
O. Loffeld, Estimationstheorie, Bd.2, Anwendungen, Kalman-Filter. R. Oldenbourg Verlag GmbH, Muenchen, 1990
W. Koch, Advanced target tracking techniques, in Advanced Radar Signal and Data Processing, Educational Notes RTO-EN-SET-086, Paper 2, France, 2006
T. Kirubarajan, Y. Bar-Shalom, K. Pattipati, I. Kadar, Ground target tracking with variable structure IMM estimator. IEEE Trans. Aerosp. Electron. Syst. 36(1), 26–46 (2000)
B. Ristic, S. Arulampalam, N. Gordon. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, 2004
S.J. Julier, J.K. Uhlmann, A new extension of the kalman filter to nonlinear systems, in Proceedings of 11th International Symposium Aerospace/Defense Sensing, Simulation and Controls (AeroSense), 1997
S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)
A. Doucet, N.D. Freitas, N. Gordon. Sequential Monte Carlo Methods in Practice (Springer, Berlin, 2001)
H. Tanizaki. Nonlinear Filters: Estimation and Applications. 2nd edn. (Springer, Berlin, 1996)
G. Battistello, M. Ulmke. Exploitation of a priori information for tracking maritime intermittent data sources, in Proceedings of 14th International Conference on Information Fusion (Chigago, 2011)
D. Simon, Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl. 4(8), 1303–1318 (2010)
D. Simon, T.L. Chia, Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002)
N. Gupta, R. Hauser, Kalman filtering with equality and inequality state constraints. Source: http://arxiv.org/pdf/0709.2791.pdf, page URL last checked December 2014, 2007
D. Simon, D.L. Simon, Constrained kalman filtering via density function truncation for turbofan engine health estimation. Int. J. Syst. Sci. 41(2), 159–171 (2010)
B. Bell, J. Burke, G. Pillonetto, An inequality constrained nonlinear kalman-bucy smoother by interior point likelihood maximization. Automatica 45(1), 25–33 (2009)
W. Ward, H. Durrant-Whyte, Model-based multi-sensor data fusion, in Proceedings of IEEE International Conference on Robotics Automation (Nice, France, 1992)
L. Wang, Y. Chiang, F. Chang, Filtering method for nonlinear system with constraints. IEE Proc. Control Theory Appl. 149(6), 525–531 (2002)
S. Ko, R. Bitmead, State estimation for linear system with state equality constraints. Automatica 43(8), 1363–1368 (2007)
C. Yang, E. Blasch, Kalman filtering with nonlinear state constraints. IEEE Trans. Aerosp. Electron. Syst. 45(1), 70–84 (2008)
C. Rao, J. Rawlings, J. Lee, Constrained linear state estimation—a moving horizon approach. Automatica 37(10), 1619–1628 (2001)
C. Rao, J. Rawlings, D. Mayne, Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)
F. Papi, M. Podt, Y. Boers, G. Battistello, M. Ulmke, On constraints exploitation for particle filtering based target tracking, in Proceedings of the 15th International Conference on Information Fusion, 2012
M. Vespe, M. Sciotti, F. Burro, G. Battistello, S. Sorge. Maritime multi-sensor data association based on geographic and navigational knowledge, In Proceedings of IEEE Radar Conference (Rome, 2008)
G. Battistello, M. Ulmke, F. Papi, M. Podt, Y. Boers, Assessment of vessel route information use in Bayesian non-linear filtering, in Proceedings of 15th International Conference on Information Fusion (Singapore, 2012)
G. Pallotta, S. Horn, P. Braca, K. Bryan, Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: real-world experimental results, in Proceedings of the 17th International Conference on Information Fusion, 2014
C. Agate, K.J. Sullivan, Road-constraint target tracking and identification using a particle filter, in Proceedings of Signal and Data Processing of Small Targets, vol. 5204, SPIE, 2003
M.S. Arulampalam, N. Gordon, M. Orton, B. Ristic, A variable structure multiple model particle filter for GMTI tracking, in Proceedings of 5th International Conference on Information Fusion (Annapolis, 2002)
W. Koch, J. Koller, M. Ulmke, Ground target tracking and road map extraction. ISPRS J. Photogrammetry Remote Sens. 61, 197–208 (2006)
U. Orguner, T. Schon, F. Gustafsson, Improved target tracking with road network information, in Aerospace conference, 2009 IEEE, pp. 1–11, March 2009
D. Streller, Road map assisted ground target tracking, in Proceedings of 11th International Conference on Information Fusion (Cologne, 2008)
M. Zhang, S. Knedlik, O. Loffeld, An adaptive road-constrained IMM estimator for ground target tracking in GSM networks, in 11th International Conference on Information Fusion (Cologne, 2008)
W. Koch, Tracking and data fusion applications. Advanced Radar Signal and Data Processing, Educational Notes RTO-EN-SET-086, Paper 9 (France, 2006)
M. Ulmke, W. Koch, Road-map assisted ground moving target tracking. IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006)
Y. Bar-Shalom, X.-R. Li, Multitarget-Multisensor Tracking: Principles and Techniques (YBS Publishing, Storrs, CT, 1995)
M. Skolnik. Radar Handbook. 3rd edn. (McGraw-Hill, 2008)
J.R. Guerci, Space-Time Adaptive Processing for Radar (Artech House, Boston, London, 2003)
R. Klemm, Principles of Space-Time Adaptive Processing, 3rd edn. IET Radar, Sonar and Navigation, Series 21, 2006
W. Koch, R. Klemm, Ground target tracking with STAP radar. IEE Proc. Radar, Sonar Navig. 148(3), 173–185 (2001)
M. Mertens, T. Kirubarajan, W. Koch, Exploiting doppler blind zone information for ground moving target tracking with bistatic airborne radar. IEEE Trans. Aerosp. Electron. Syst. 50(1), 130–148 (2014)
Q. Wang, S. Kulkarni, S. Verdu, Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Info. Theory 55(5), 2392–2405 (2009)
M. Mertens, M. Feldmann, M. Ulmke, W. Koch, Tracking and data fusion for ground surveillance, chapter 6, in Integrated Tracking, Classification, and Sensor Management: Theory and Applications, ed. by M. Mallick, V. Krishnamurthy, B.-N. Vo (IEEE, Wiley, 2012)
M. Mertens, M. Ulmke, Ground moving target tracking with context information and a refined sensor model, in Proceedings of the 11th International Conference on Information Fusion (Cologne, 2008)
S. Blackman, Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19, 5–18 (2004)
D. Cerutti-Maori, J. Klare, A.R. Brenner, J.H.G. Ender, Wide-area traffic monitoring with the SAR/GMTI system PAMIR. IEEE Trans. Geosci. Remote Sens. 46(10), 3019–3030 (2008)
J.H.G. Ender, A.R. Brenner, PAMIR—a wideband phased array SAR/MTI system. IEE Proc. Radar, Sonar Navig. 150(3), 165–172 (2003)
M. Mertens, R. Kohlleppel, Ground target tracking with experimental data of the pamir system, in Proceedings of the 17th International Conference on Information Fusion (Salamanca, 2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland (outside the USA)
About this chapter
Cite this chapter
Battistello, G., Mertens, M., Ulmke, M., Koch, W. (2016). Context Exploitation for Target Tracking. In: Snidaro, L., García, J., Llinas, J., Blasch, E. (eds) Context-Enhanced Information Fusion. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-28971-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-28971-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28969-4
Online ISBN: 978-3-319-28971-7
eBook Packages: Computer ScienceComputer Science (R0)