Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intensity-Depth Face Alignment Using Cascade Shape Regression

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9492))

Included in the following conference series:

Abstract

With quick development of Kinect, depth image has become an important channel for assisting the color/infrared image in diverse computer vision tasks. Kinect can provide depth image as well as color and infrared images, which are suitable for multi-model vision tasks. This paper presents a framework for intensity-depth face alignment based on cascade shape regression. Information from intensity and depth images is combined during feature selection in cascade shape regression. Experimental results show that this combination improves face alignment accuracy notably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available soon on http://bcmi.sjtu.edu.cn/resource.html.

References

  1. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1859–1866. IEEE (2014)

    Google Scholar 

  2. Baltrusaitis, T., Robinson, P., Morency, L.: 3D constrained local model for rigid and non-rigid facial tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2610–2617. IEEE (2012)

    Google Scholar 

  3. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: IEEE International Conference on Computer Vision (ICCV), pp. 1513–1520. IEEE (2013)

    Google Scholar 

  4. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vis. (IJCV) 107(2), 177–190 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, D., Ren, S., Wei, Y., Cao, X., Sun, J.: Joint cascade face detection and alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 109–122. Springer, Heidelberg (2014)

    Google Scholar 

  6. Cheng, S., Zafeiriou, S., Asthana, A., Pantic, M.: 3D facial geometric features for constrained local model. In: IEEE Conference on Image Processing (ICIP). IEEE (2014)

    Google Scholar 

  7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 23(6), 681–685 (2001)

    Article  Google Scholar 

  8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. (CVIU) 61(1), 38–59 (1995)

    Article  Google Scholar 

  9. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: British Machine Vision Conference (BMVC), vol. 2, p. 6 (2006)

    Google Scholar 

  10. Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1078–1085. IEEE (2010)

    Google Scholar 

  11. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 947–954. IEEE (2005)

    Google Scholar 

  12. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 397–403. IEEE (2013)

    Google Scholar 

  13. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic methodology for facial landmark annotation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 896–903. IEEE (2013)

    Google Scholar 

  14. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3476–3483. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61272248), the National Basic Research Program of China (Grant No. 2013CB329401), and the Science and Technology Commission of Shanghai Municipality (Grant No. 13511500200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cao, Y., Lu, BL. (2015). Intensity-Depth Face Alignment Using Cascade Shape Regression. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9492. Springer, Cham. https://doi.org/10.1007/978-3-319-26561-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26561-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26560-5

  • Online ISBN: 978-3-319-26561-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics