Nothing Special   »   [go: up one dir, main page]

Skip to main content

Personalizing Web Search Results Based on Subspace Projection

  • Conference paper
Information Retrieval Technology (AIRS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8870))

Included in the following conference series:

Abstract

Personalized search has recently attracted increasing attention. This paper focuses on utilizing click-through data to personalize the web search results, from a novel perspective based on subspace projection. Specifically, we represent a user profile as a vector subspace spanned by a basis generated from a word-correlation matrix, which is able to capture the dependencies between words in the “satisfied click” (SAT Click) documents. A personalized score for each document in the original result list returned by a search engine is computed by projecting the document (represented as a vector or another word-correlation subspace) onto the user profile subspace. The personalized scores are then used to re-rank the documents through the Borda’ ranking fusion method. Empirical evaluation is carried out on a real user log data set collected from a prominent search engine (Bing). Experimental results demonstrate the effectiveness of our methods, especially for the queries with high click entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melucci, M.: A Basis for Information Retrieval in Context. ACM Transactions on Information Systems (TOIS) 26(3), 14 (2008)

    Article  Google Scholar 

  2. Dou, Z., Song, R., Wen, J.R.: A large-scale Evaluation and Analysis of Personalized Search Strategies. In: WWW, pp. 581–590 (2007)

    Google Scholar 

  3. Teevan, J., Dumais, S.T., Horvitz, E.: Potential for Personalization. ACM Transactions on Computer-Human Interaction (TOCHI) 17(1), 4 (2010)

    Article  Google Scholar 

  4. Bennett, P.N., Radlinski, F., White, R.W., Yilmaz, E.: Inferring and using Location Metadata to Personalize Web Search. In: SIGIR, pp. 135–144 (2011)

    Google Scholar 

  5. Sontag, D., Collins-Thompson, K., Bennett, P.N., White, R.W., Dumais, S., Billerbeck, B.: Probabilistic Models for Personalizing Web Search. In: WSDM, pp. 433–442 (2012)

    Google Scholar 

  6. White, R.W., Bennett, P.N., Dumais, S.T.: Predicting Short-term Interests using Activity-based Search Context. In: CIKM, pp. 1009–1018 (2010)

    Google Scholar 

  7. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware Ranking in Web Search. In: SIGIR, pp. 451–458 (2010)

    Google Scholar 

  8. Agichtein, E., Brill, E., Dumais, S.: Improving Web Search Ranking by Incorporating User Behavior Information. In: SIGIR, pp. 19–26 (2006)

    Google Scholar 

  9. Zhang, S., Dong, N.: An Effective Combination of Different Order N-grams. In: Proceedings of O-COCOSDA, pp. 251–256 (2003)

    Google Scholar 

  10. Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the Impact of Short-and Long-term Behavior on Search Personalization. In: SIGIR, pp. 185–194 (2012)

    Google Scholar 

  11. Golub, G., Loan, C.V.: Matrix Computation, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)

    Google Scholar 

  12. Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring Folksonomy for Personalized Search. In: SIGIR, pp. 155–162. ACM (2008)

    Google Scholar 

  13. Sun, J.T., Zeng, H.J., Liu, H., Lu, Y., Chen, Z.: CubeSVD: A Novel approach to Personalized Web Search, pp. 382–390 (2005)

    Google Scholar 

  14. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web, pp. 613–622 (2001)

    Google Scholar 

  15. Melucci, M.: Context Modeling and Discovery using Vector Space Bases. In: CIKM, pp. 808–815 (2005)

    Google Scholar 

  16. Melucci, M., White, R.W.: Utilizing a Geometry of Context for Enhanced Implicit Feedback. In: CIKM, pp. 273–282 (2007)

    Google Scholar 

  17. Van, R., Cornelis, J.: The Geometry of Information Retrieval. The Cambridge University Press (2004)

    Google Scholar 

  18. Porter, M.F.: An Algorithm for Suffix Stripping, Program 14(3), 130–137 (1980)

    Google Scholar 

  19. Zhai, C., Lafferty, J.: A Study of Smoothing Methods for Language Models applied to ad hoc Information Retrieval. In: SIGIR, pp. 334–342 (2001)

    Google Scholar 

  20. Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., Sontag, D.: Personalizing Web Search Results by Reading Level. In: CIKM, pp. 403–412 (2011)

    Google Scholar 

  21. Nanas, N., Vavalis, M., De Roeck, A.N.: A Network-based Model for High-dimensional Information Filtering. In: SIGIR, pp. 202–209 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, J., Song, D., Zhang, P., Wen, JR., Dou, Z. (2014). Personalizing Web Search Results Based on Subspace Projection. In: Jaafar, A., et al. Information Retrieval Technology. AIRS 2014. Lecture Notes in Computer Science, vol 8870. Springer, Cham. https://doi.org/10.1007/978-3-319-12844-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12844-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12843-6

  • Online ISBN: 978-3-319-12844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics