Nothing Special   »   [go: up one dir, main page]

Skip to main content

Morphological Scale-Space Operators for Images Supported on Point Clouds

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

  • 2411 Accesses

  • 2 Citations

Abstract

The aim of this paper is to develop the theory, and to propose an algorithm, for morphological processing of images painted on point clouds, viewed as a length metric measure space \((X,d,\mu )\). In order to extend morphological operators to process point cloud supported images, one needs to define dilation and erosion as semigroup operators on \((X,d)\). That corresponds to a supremal convolution (and infimal convolution) using admissible structuring function on \((X,d)\). From a more theoretical perspective, we introduce the notion of abstract structuring functions formulated on length metric Maslov idempotent measurable spaces, which is the appropriate setting for \((X,d)\). In practice, computation of Maslov structuring function is approached by a random walks framework to estimate heat kernel on \((X,d,\mu )\), followed by the logarithmic trick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akian, M.: Densities of idempotent measures and large deviations. Trans. of the American Mathematical Society 351(11), 4515–4543 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akian, M., Gaubert, S., Walsh, C.: The Max-Plus Martin boundary. Documenta Mathematica 14, 195–240 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Inventiones Mathematicae 195(2), 289–391 (2014)

    MATH  MathSciNet  Google Scholar 

  4. Angulo, J., Velasco-Forero, S.: Stochastic morphological filtering and bellman-maslov chains. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 171–182. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Angulo, J., Velasco-Forero, S.: Riemannian Mathematical Morphology. Pattern Recognition Letters 47, 93–101 (2014)

    Article  Google Scholar 

  6. Belkin, M., Sun, J., Wang, Y.: Constructing laplace operator from point clouds in \(R^d\). In: Proc. of ACM Symp. on Discrete Algorithms, pp. 1031–1040 (2009)

    Google Scholar 

  7. Burgeth, B., Weickert, J.: An Explanation for the Logarithmic Connection between Linear and Morphological System Theory. International Journal of Computer Vision 64(2–3), 157–169 (2005)

    Article  Google Scholar 

  8. Calderon, S., Boubekeur, T.: Point Morphology. ACM Transactions on Graphics (Proc. SIGGRAPH 2014) (2014)

    Google Scholar 

  9. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32(5) (2013)

    Google Scholar 

  10. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. American Mathematical Society (2012)

    Google Scholar 

  11. Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric measure spaces. In: Geometry and Analysis on Fractals. Springer Proceedings in Mathematics & Statistics, vol. 88, pp. 147–208 (2014)

    Google Scholar 

  12. Heijmans, H.J.A.M.: Morphological image operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  13. Jackway, P.T., Deriche, M.: Scale-Space Properties of the Multiscale Morphological Dilation-Erosion. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 38–51 (1996)

    Article  Google Scholar 

  14. Liang, J., Zhao, H.: Methods and Algorithms for Scientific Computing Solving Partial Differential Equations on Point Clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Litvinov, G.L., Maslov, V.P., Shpiz, G.B.: Idempotent Functional Analysis: An Algebraic Approach. Mathematical Notes 69(5–6), 696–729 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lott, J., Villani, C.: Hamilton-Jacobi semigroup on length spaces and applications. Journal de Math. Pures et Appliquées 88, 219–229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maragos, P.: Differential morphology and image processing. IEEE Transactions on Image Processing 5(1), 922–937 (1996)

    Article  MathSciNet  Google Scholar 

  18. Maslov, V.: Méthodes opératorielles. Editions Mir (1987)

    Google Scholar 

  19. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Del Moral, P.: Maslov optimization theory: optimality versus randomness. In: Kolokoltsov, V.N., Maslov, V.P. (eds.) Idempotency Analysis and its Applications. Kluwer Publishers (1997)

    Google Scholar 

  21. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)

    Google Scholar 

  22. Sobolevskii, A.N.: Aubry-Mather theory and idempotent eigenfunctions of Bellman operator. Commun. Contemp. Math. 1, 517–533 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Spira, A., Kimmel, R., Sochen, N.: A short-time Beltrami kernel for smoothing images and manifolds. IEEE Trans. on Image Processing 16(6), 1628–1636 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Angulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Angulo, J. (2015). Morphological Scale-Space Operators for Images Supported on Point Clouds. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics