Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Diffusion-Based Molecular Communication with Unanchored Enzymes

  • Conference paper
  • First Online:
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2012)

Abstract

In this paper, we propose adding enzymes to the propagation environment of a diffusive molecular communication system as a strategy for mitigating intersymbol interference. The enzymes form reaction intermediates with information molecules and then degrade them so that they have a smaller chance of interfering with future transmissions. We present the reaction-diffusion dynamics of this proposed system and derive a lower bound expression for the expected number of molecules observed at the receiver. We justify a particle-based simulation framework, and present simulation results that show both the accuracy of our expression and the potential for enzymes to improve communication performance.

The first author was supported by the Natural Sciences and Engineering Research Council of Canada, and a Walter C. Sumner Memorial Fellowship. Computing resources were provided by WestGrid and Compute/Calcul Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 3rd edn. Garland Science, New York (2010)

    Google Scholar 

  2. Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw. 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  3. Nakano, T., Moore, M.J., Wei, F., Vasilakos, A.V., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012)

    Article  Google Scholar 

  4. Nelson, P.: Biological Physics: Energy, Information, Life, 1st edn. W. H. Freeman and Company, New York (2008)

    Google Scholar 

  5. Hiyama, S., Moritani, Y.: Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun. Netw. 1(1), 20–30 (2010)

    Article  Google Scholar 

  6. Atakan, B., Akan, O.B.: Deterministic capacity of information flow in molecular nanonetworks. Nano Commun. Netw. 1(1), 31–42 (2010)

    Article  Google Scholar 

  7. Mahfuz, M.U., Makrakis, D., Mouftah, H.T.: Characterization of intersymbol interference in concentration-encoded unicast molecular communication. In: Proceedings of 2011 IEEE CCECE, pp. 164–168, May 2011

    Google Scholar 

  8. Einolghozati, A., Sardari, M., Beirami, A., Fekri, F.: Capacity of discrete molecular diffusion channels. In: Proceedings of 2011 IEEE ISIT, pp. 723–727, August 2011

    Google Scholar 

  9. Chou, C.T.: Molecular circuits for decoding frequency coded signals in nano-communication networks. Nano Comm. Netw. 3(1), 46–56 (2012)

    Article  Google Scholar 

  10. Nakano, T., Okaie, Y., Vasilakos, A.V.: Throughput and efficiency of molecular communication between nanomachines. In: Proceedings of 2012 IEEE WCNC, pp. 704–708, April 2012

    Google Scholar 

  11. Miorandi, D.: A stochastic model for molecular communications. Nano Commun. Netw. 2(4), 205–212 (2011)

    Article  Google Scholar 

  12. Moore, M.J., Suda, T., Oiwa, K.: Molecular communication: modeling noise effects on information rate. IEEE Trans. Nanobiosci. 8(2), 169–180 (2009)

    Article  Google Scholar 

  13. Naka, T., Shiba, K., Sakamoto, N.: A two-dimensional compartment model for the reaction-diffusion system of acetylcholine in the synaptic cleft at the neuromuscular junction. Biosystems 41(1), 17–27 (1997)

    Article  Google Scholar 

  14. Cheng, Y., Suen, J.K., Radi, Z., Bond, S.D., Holst, M.J., McCammon, J.A.: Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models. Biophys. Chem. 127(3), 129–139 (2007)

    Article  Google Scholar 

  15. Chang, R.: Physical Chemistry for the Biosciences. University Science Books, Sausalito (2005)

    Google Scholar 

  16. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A 188(13), 404–425 (1992)

    Article  MathSciNet  Google Scholar 

  17. Pierobon, M., Akyildiz, I.F.: Information capacity of diffusion-based molecular communication in nanonetworks. In: Proceedings of 2011 IEEE INFOCOM 2011, pp. 506–510, April 2011

    Google Scholar 

  18. Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE J. Sel. Areas Commun. 28(4), 602–611 (2010)

    Article  Google Scholar 

  19. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 2nd edn. Birkhaeuser, Boston (2005)

    Book  MATH  Google Scholar 

  20. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58(1), 35–55 (2007)

    Article  Google Scholar 

  21. Iyengar, K.A., Harris, L.A., Clancy, P.: Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm. J. Chem. Phys. 132(9), 094101 (2010)

    Article  Google Scholar 

  22. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1(3), 137 (2004)

    Article  Google Scholar 

  23. Bernstein, D.: Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys. Rev. E 71(4), 041103 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Noel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Noel, A., Cheung, K., Schober, R. (2014). Improving Diffusion-Based Molecular Communication with Unanchored Enzymes. In: Di Caro, G., Theraulaz, G. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-06944-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06944-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06943-2

  • Online ISBN: 978-3-319-06944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics