Nothing Special   »   [go: up one dir, main page]

Skip to main content

Beyond Modes: Building a Secure Record Protocol from a Cryptographic Sponge Permutation

  • Conference paper
Topics in Cryptology – CT-RSA 2014 (CT-RSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8366))

Included in the following conference series:

Abstract

BLINKER is a light-weight cryptographic suite and record protocol built from a single permutation. Its design is based on the Sponge construction used by the SHA-3 algorithm KECCAK. We examine the SpongeWrap authenticated encryption mode and expand its padding mechanism to offer explicit domain separation and enhanced security for our specific requirements: shared secret half-duplex keying, encryption, and a MAC-and-continue mode. We motivate these enhancements by showing that unlike legacy protocols, the resulting record protocol is secure against a two-channel synchronization attack while also having a significantly smaller implementation footprint. The design facilitates security proofs directly from a single cryptographic primitive (a single security assumption) rather than via idealization of multitude of algorithms, paddings and modes of operation. The protocol is also uniquely suitable for an autonomous or semi-autonomous hardware implementation of protocols where the secrets never leave the module, making it attractive for smart card and HSM designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained environments. International Journal of Wireless and Mobile Computing, Special Issue on Security of Computer Network and Mobile Systems 2(1), 86–93 (2006)

    Google Scholar 

  3. Gren, M.A., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. International Journal of Wireless and Mobile Computing 5(1), 48–59 (2011)

    Article  Google Scholar 

  4. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Ultra-lightweight cryptography for low-cost RFID tags: Hummingbird algorithm and protocol. Technical Report CACR-2009-29, University of Waterloo (2009)

    Google Scholar 

  5. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The hummingbird-2 lightweight authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Yalçın, T., Kavun, E.B.: On the implementation aspects of sponge-based authenticated encryption for pervasive devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 141–157. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. NIST: NIST selects winner of secure hash algorithm (SHA-3) competition. NIST Tech Beat Newsletter (October 2, 2012)

    Google Scholar 

  9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, version 3.0. NIST SHA3 Submission Document (January 2011)

    Google Scholar 

  10. Kelsey, J.: SHA3: Where we’ve been, where we’re going. Talk Given at RSA Security Conference USA 2013 (February 2013)

    Google Scholar 

  11. Kelsey, J.: SHA3: Past, present, and future. Invited Talk Given at CHES 2013 (August 2013)

    Google Scholar 

  12. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version 3.0. IETF RFC 6101 (Historic) (August 2011)

    Google Scholar 

  13. Ylönen, T., Lonvick, C.: The secure shell (SSH) protocol architecture. IETF RFC 4251 (Standards Track) (January 2006)

    Google Scholar 

  14. Ylönen, T., Lonvick, C.: The secure shell (SSH) transport layer protocol. IETF RFC 4253 (Standards Track) (January 2006)

    Google Scholar 

  15. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. IETF RFC 5246 (Standards Track) (August 2008)

    Google Scholar 

  16. Kent, S., Seo, K.: Security architecture for the internet protocol. IETF RFC 4301 (Standards Track) (December 2005)

    Google Scholar 

  17. Kent, S.: IP authentication header. IETF RFC 4302 (Standards Track) (December 2005)

    Google Scholar 

  18. Kent, S.: IP encapsulating security payload (ESP). IETF RFC 4303 (Standards Track) (December 2005)

    Google Scholar 

  19. Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W., Zorn, G.: Point-to-point tunneling protocol (PPTP). IETF RFC 2637 (July 1999)

    Google Scholar 

  20. IEEE: IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. amendment 6: Medium access control (MAC) security enhancements (July 2004)

    Google Scholar 

  21. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS.. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–546. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record protocols. In: IEEE Symposium on Security and Privacy 2013 (to appear, 2013)

    Google Scholar 

  24. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash functions - the HMAC construction. CryptoBytes 2(1) (1996)

    Google Scholar 

  25. NIST: Advanced Encryption Standard (AES). Federal Information Processing Standards 197 (2001)

    Google Scholar 

  26. Dworkin, M.: Recommendation for block cipher modes of operation. Special Publication 800-38A (December 2001)

    Google Scholar 

  27. Rivest, R.: The RC4 encryption algorithm (March 1992)

    Google Scholar 

  28. NIST: Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC. NIST Special Publication 800-38D (2007)

    Google Scholar 

  29. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF RFC 3610 (September 2003)

    Google Scholar 

  30. NIST: Secure Hash Standard (SHS). Federal Information Processing Standards Publication 180-4 (March 2012)

    Google Scholar 

  31. Simon, D., Aboba, B., Hurst, R.: The EAP-TLS authentication protocol. IETF RFC 5216 (March 2008)

    Google Scholar 

  32. UKPA: Acquirers’ interface requirements for electronic data capture terminals. UKPA / APACS Standard 40, incorporated into Standard 70 Book 2, 4 & 5 (2007)

    Google Scholar 

  33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 196–205. ACM (2001)

    Google Scholar 

  34. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM Transactions on Information and System Security (TISSEC) 6(3), 365–403 (2003)

    Article  Google Scholar 

  35. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  36. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authentication and authenticated encryption. In: DIAC 2012 (2012), http://keccak.noekeon.org/KeccakDIAC2012.pdf

  37. Saarinen, M.J.O.: Developing a grey hat C2 and RAT for APT security training and assessment. In: GreHack 2013 Hacking Conference, Grenoble, France, November 15, 2013 (to appear)

    Google Scholar 

  38. Bellovin, S.M.: Problem areas for the IP security protocols. In: Proc. Sixth USENIX Security Symposium, pp. 205–214 (1996)

    Google Scholar 

  39. Mitchell, J., Shmatikov, V., Stern, U.: Finite-state analysis of SSL 3.0. In: USENIX Security Symposium 1998, 201–216. USENIX (1998)

    Google Scholar 

  40. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: The Second USENIX Workshop on Electronic Commerce Proceedings, pp. 29–40. USENIX Press (November 1996)

    Google Scholar 

  41. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only configurations. In: IEEE Symposium on Security and Privacy, pp. 335–349. IEEE Computer Society (2007)

    Google Scholar 

  42. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt configurations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 493–504. ACM (2010)

    Google Scholar 

  43. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  44. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  45. International Standardization Organization: ISO/IEC 7816-4:2013 Identification cards – Integrated circuit cards – Part 4: Organization, security and commands for interchange (2013)

    Google Scholar 

  46. International Standardization Organization: ISO/IEC 18000-63. Information technology – Radio frequency identification for item management – Part 6: Parameters for air interface communications at 860 MHz to 960 MHz Type C (2012)

    Google Scholar 

  47. MODBUS: MODBUS Application Protocol Specification V1.1B (April 2012), http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

  48. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash Workshop 2007 (May 2007)

    Google Scholar 

  49. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sakura: a flexible coding for tree hashing. IACR ePrint 2013/213 (April 2013), http://eprint.iacr.org/2013/213

  50. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge construction. In: SKEW 2011 Symmetric Key Encryption Workshop (February 2011)

    Google Scholar 

  51. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  52. Ferguson, N., Schneier, B.: Practical Cryptography. John Wiley & Sons (2003)

    Google Scholar 

  53. Saarinen, M.-J.O.: CBEAM: Efficient authenticated encryption from feebly one-way phi functions. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, Springer, Heidelberg (2014)

    Google Scholar 

  54. Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-round report of the SHA-3 cryptographic hash algorithm competition. Technical Report NISTIR 7896, National Institute of Standards and Technology (November 2012)

    Google Scholar 

  55. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  56. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: quark: A lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  57. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash. Journal of Cryptology (2012), doi: 10.1007/s00145-012-9125-6

    Google Scholar 

  58. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  59. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Saarinen, MJ.O. (2014). Beyond Modes: Building a Secure Record Protocol from a Cryptographic Sponge Permutation. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04852-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04851-2

  • Online ISBN: 978-3-319-04852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics