Abstract
Current advances in music recommendation underline the importance of multimodal and user-centric approaches in order to transcend limits imposed by methods that solely use audio, web, or collaborative filtering data. We propose several hybrid music recommendation algorithms that combine information on the music content, the music context, and the user context, in particular integrating geospatial notions of similarity. To this end, we use a novel standardized data set of music listening activities inferred from microblogs (MusicMicro) and state-of-the-art techniques to extract audio features and contextual web features. The multimodal recommendation approaches are evaluated for the task of music artist recommendation. We show that traditional approaches (in particular, collaborative filtering) benefit from adding a user context component, geolocation in this case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying Low-Level and High-Level Music Similarity Measures. IEEE Transactions on Multimedia 13(4), 687–701 (2011)
Byklum, D.: Geography and Music: Making the Connection. Journal of Geography 93(6), 274–278 (1994)
Coviello, E., Chan, A.B., Lanckriet, G.: Time Series Models for Semantic Music Annotation. IEEE Transactions on Audio, Speech, and Language Processing 19(5), 1343–1359 (2011)
Liem, C., Müller, M., Eck, D., Tzanetakis, G., Hanjalic, A.: The Need for Music Information Retrieval with User-centered and Multimodal Strategies. In: Proc. MIRUM, Scottsdale, AZ, USA (2011)
McCreadie, R., Soboroff, I., Lin, J., Macdonald, C., Ounis, I., McCullough, D.: On Building a Reusable Twitter Corpus. In: Proc. SIGIR, Portland, OR, USA (2012)
McFee, B., Lanckriet, G.: Heterogeneous Embedding for Subjective Artist Similarity. In: Proc. ISMIR, Kobe, Japan (2009)
Park, S., Kim, S., Lee, S., Yeo, W.S.: Online Map Interface for Creative and Interactive MusicMaking. In: Proc. NIME, Sydney, Australia (2010)
Pohle, T., Schnitzer, D., Schedl, M., Knees, P., Widmer, G.: On Rhythm and General Music Similarity. In: Proc. ISMIR, Kobe, Japan (2009)
Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in Space: Popular Nearest Neighbors in High-dimensional Data. The Journal of Machine Learning Research, 2487–2531 (2010)
Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking of Music Datasets on the Semantic Web. In: Proc. WWW: LDOW Workshop, Beijing, China (2008)
Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer (2011)
Schedl, M.: #nowplaying Madonna: A Large-Scale Evaluation on Estimating Similarities Between Music Artists and Between Movies from Microblogs. Information Retrieval 15, 183–217 (2012)
Schedl, M.: Leveraging Microblogs for Spatiotemporal Music Information Retrieval. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 796–799. Springer, Heidelberg (2013)
Schedl, M., Flexer, A.: Putting the User in the Center of Music Information Retrieval. In: Proc. ISMIR, Porto, Portugal (2012)
Schedl, M., Pohle, T., Knees, P., Widmer, G.: Exploring the Music Similarity Space on the Web. ACM Transactions on Information Systems 29(3) (July 2011)
Schnitzer, D., Flexer, A., Schedl, M., Widmer, G.: Local and Global Scaling Reduce Hubs in Space. Journal of Machine Learning Research 13, 2871–2902 (2012)
Zangerle, E., Gassler, W., Specht, G.: Exploiting Twitter’s Collective Knowledge for Music Recommendations. In: Proc. WWW: #MSM Workshop, Lyon, France (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Schedl, M., Schnitzer, D. (2014). Location-Aware Music Artist Recommendation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-04117-9_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04116-2
Online ISBN: 978-3-319-04117-9
eBook Packages: Computer ScienceComputer Science (R0)