Nothing Special   »   [go: up one dir, main page]

Skip to main content

Location-Aware Music Artist Recommendation

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8326))

Included in the following conference series:

Abstract

Current advances in music recommendation underline the importance of multimodal and user-centric approaches in order to transcend limits imposed by methods that solely use audio, web, or collaborative filtering data. We propose several hybrid music recommendation algorithms that combine information on the music content, the music context, and the user context, in particular integrating geospatial notions of similarity. To this end, we use a novel standardized data set of music listening activities inferred from microblogs (MusicMicro) and state-of-the-art techniques to extract audio features and contextual web features. The multimodal recommendation approaches are evaluated for the task of music artist recommendation. We show that traditional approaches (in particular, collaborative filtering) benefit from adding a user context component, geolocation in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying Low-Level and High-Level Music Similarity Measures. IEEE Transactions on Multimedia 13(4), 687–701 (2011)

    Article  Google Scholar 

  2. Byklum, D.: Geography and Music: Making the Connection. Journal of Geography 93(6), 274–278 (1994)

    Article  Google Scholar 

  3. Coviello, E., Chan, A.B., Lanckriet, G.: Time Series Models for Semantic Music Annotation. IEEE Transactions on Audio, Speech, and Language Processing 19(5), 1343–1359 (2011)

    Article  Google Scholar 

  4. Liem, C., Müller, M., Eck, D., Tzanetakis, G., Hanjalic, A.: The Need for Music Information Retrieval with User-centered and Multimodal Strategies. In: Proc. MIRUM, Scottsdale, AZ, USA (2011)

    Google Scholar 

  5. McCreadie, R., Soboroff, I., Lin, J., Macdonald, C., Ounis, I., McCullough, D.: On Building a Reusable Twitter Corpus. In: Proc. SIGIR, Portland, OR, USA (2012)

    Google Scholar 

  6. McFee, B., Lanckriet, G.: Heterogeneous Embedding for Subjective Artist Similarity. In: Proc. ISMIR, Kobe, Japan (2009)

    Google Scholar 

  7. Park, S., Kim, S., Lee, S., Yeo, W.S.: Online Map Interface for Creative and Interactive MusicMaking. In: Proc. NIME, Sydney, Australia (2010)

    Google Scholar 

  8. Pohle, T., Schnitzer, D., Schedl, M., Knees, P., Widmer, G.: On Rhythm and General Music Similarity. In: Proc. ISMIR, Kobe, Japan (2009)

    Google Scholar 

  9. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in Space: Popular Nearest Neighbors in High-dimensional Data. The Journal of Machine Learning Research, 2487–2531 (2010)

    Google Scholar 

  10. Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking of Music Datasets on the Semantic Web. In: Proc. WWW: LDOW Workshop, Beijing, China (2008)

    Google Scholar 

  11. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer (2011)

    Google Scholar 

  12. Schedl, M.: #nowplaying Madonna: A Large-Scale Evaluation on Estimating Similarities Between Music Artists and Between Movies from Microblogs. Information Retrieval 15, 183–217 (2012)

    Article  Google Scholar 

  13. Schedl, M.: Leveraging Microblogs for Spatiotemporal Music Information Retrieval. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 796–799. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Schedl, M., Flexer, A.: Putting the User in the Center of Music Information Retrieval. In: Proc. ISMIR, Porto, Portugal (2012)

    Google Scholar 

  15. Schedl, M., Pohle, T., Knees, P., Widmer, G.: Exploring the Music Similarity Space on the Web. ACM Transactions on Information Systems 29(3) (July 2011)

    Google Scholar 

  16. Schnitzer, D., Flexer, A., Schedl, M., Widmer, G.: Local and Global Scaling Reduce Hubs in Space. Journal of Machine Learning Research 13, 2871–2902 (2012)

    MathSciNet  Google Scholar 

  17. Zangerle, E., Gassler, W., Specht, G.: Exploiting Twitter’s Collective Knowledge for Music Recommendations. In: Proc. WWW: #MSM Workshop, Lyon, France (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schedl, M., Schnitzer, D. (2014). Location-Aware Music Artist Recommendation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04117-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04116-2

  • Online ISBN: 978-3-319-04117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics