Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pursuing Detector Efficiency for Simple Scene Pedestrian Detection

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8326))

Included in the following conference series:

  • 2062 Accesses

Abstract

Detector accuracy is by any means the key focus in most existing pedestrian detection algorithms especially for clutter scenes. However, it is not always necessary, while sometimes over-fitted, to directly leverage such detectors in scenarios with simple scene compositions. To this end, limited work has done on a systematic detector simplification towards balancing its speed and accuracy. In this paper, we study this problem by investigating two mutually correlated issues, i.e. fast edge-based feature extraction and detector score computation. For handling the first issue, a simple Structured Local Edge Pattern (SLEP) is proposed to extract and encode local edge cues, extremely effectively, into a histogram. For the second, an integral image based acceleration is proposed toward fast classifier score computation by transforming the classifier score into a linear sum of weights. Experimental results on CASIA gait recognition dataset show that our proposed method is highly efficient than most existing detectors, which even faster than the practical OpenCV pedestrian detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Geronimo, D., Lopez, A.M., Sappa, A.D., et al.: Survey of pedestrian detection for advanced driver assistance systems. Pattern Analysis and Machine Intelligence (PAMI) 32, 1239–1258 (2010)

    Article  Google Scholar 

  2. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: A review. ACM Computing Surveys (CSUR) 43, 16 (2011)

    Article  Google Scholar 

  3. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28, 976–990 (2010)

    Article  Google Scholar 

  4. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding 115, 224–241 (2011)

    Google Scholar 

  5. Hu, W., Tan, T., Wang, L., et al.: A survey on visual surveillance of object motion and behaviors. Systems, Man, and Cybernetics, Part C: Applications and Reviews 34, 334–352 (2004)

    Article  Google Scholar 

  6. Gao, Y., Wang, M., Tao, D., et al.: 3D Object Retrieval and Recognition with Hypergraph Analysis. IEEE Transactions on Image Processing 21, 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gao, Y., Tang, J., Hong, R., et al.: Camera Constraint-Free View-Based 3D Object Retrieval. IEEE Transactions on Image Processing 21, 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dollar, P., Wojek, C., Schiele, B., et al.: Pedestrian detection: An evaluation of the s-tate of the art. Pattern Analysis and Machine Intelligence 34, 743–761 (2012)

    Article  Google Scholar 

  9. Oren, M., Papageorgiou, C., Sinha, P., et al.: Pedestrian detection using wavelet templates. Computer Vision and Pattern Recognition, 193–199 (1997)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition 1, 886–893 (2005)

    Google Scholar 

  11. Szarvas, M., Sakai, U., Ogata, J.: Real-time pedestrian detection using lidar and convolutional neural networks. In: Intelligent Vehicles Symposium, pp. 213–218 (2006)

    Google Scholar 

  12. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39 (2009)

    Google Scholar 

  13. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. Computer Vision and Pattern Recognition, 1–8 (2008)

    Google Scholar 

  14. Zhu, Q., Yeh, M.C., Cheng, K.T., et al.: Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition 2, 1491–1498 (2006)

    Google Scholar 

  15. Gall, J., Yao, A., Razavi, N., et al.: Hough forests for object detection, tracking, and action recognition. Pattern Analysis and Machine Intelligence 33, 2188–2202 (2011)

    Google Scholar 

  16. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: A branch and bound framework for object localization. Pattern Analysis and Machine Intelligence 31, 2129–2142 (2009)

    Article  Google Scholar 

  17. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision 77, 259–289 (2008)

    Article  Google Scholar 

  18. Moritz, C.T., Farley, C.T.: Human hopping on damped surfaces: strategies for adjusting leg mechanics. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1741–1746 (2003)

    Article  Google Scholar 

  19. Cheng, Y.C., Chen, S.Y.: Image classification using color, texture and regions. Image and Vision Computing 21, 759–776 (2003)

    Article  Google Scholar 

  20. Wang, L., Hu, W., Tan, T.: A new attempt to gait-based human identification. Pattern Recognition 1, 115–118 (2002)

    Google Scholar 

  21. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, DD., Dong, J., Su, SZ., Li, SZ., Ji, RR. (2014). Pursuing Detector Efficiency for Simple Scene Pedestrian Detection. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04117-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04116-2

  • Online ISBN: 978-3-319-04117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics