Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning-based Axial Video Motion Magnification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Video motion magnification amplifies invisible small motions to be perceptible, which provides humans with a spatially dense and holistic understanding of small motions in the scene of interest. This is based on the premise that magnifying small motions enhances the legibility of motions. In the real world, however, vibrating objects often possess convoluted systems that have complex natural frequencies, modes, and directions. Existing motion magnification often fails to improve legibility since the intricate motions still retain complex characteristics even after being magnified, which likely distracts us from analyzing them. In this work, we focus on improving legibility by proposing a new concept, axial video motion magnification, which magnifies decomposed motions along the user-specified direction. Axial video motion magnification can be applied to various applications where motions of specific axes are critical, by providing simplified and easily readable motion information. To achieve this, we propose a novel Motion Separation Module that enables the disentangling and magnifying of motion representation along axes of interest. Furthermore, we build a new synthetic training dataset for our task that is generalized to real data. Our proposed method improves the legibility of resulting motions along certain axes by adding a new feature: user controllability. In addition, axial video motion magnification is a more generalized concept; thus, our method can be directly adapted to the generic motion magnification and achieves favorable performance against competing methods. The code and dataset are available on our project page: https://axial-momag.github.io/axial-momag/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We reproduced all the results using the codes publicly accessible.

References

  1. Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2013)

    Google Scholar 

  2. Brattoli, B., et al.: Unsupervised behaviour analysis and magnification (UBAM) using deep learning. Nat. Mach. Intell. 3(6), 495–506 (2021)

    Article  Google Scholar 

  3. Brodnik, N., et al.: Fracture diodes: directional asymmetry of fracture toughness. Phys. Rev. Lett. 126(2), 025503 (2021)

    Article  Google Scholar 

  4. Cha, Y.J., Chen, J.G., Büyüköztürk, O.: Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng. Struct. 132, 300–313 (2017)

    Article  Google Scholar 

  5. Chen, J.G., Davis, A., Wadhwa, N., Durand, F., Freeman, W.T., Büyüköztürk, O.: Video camera-based vibration measurement for civil infrastructure applications. J. Infrastruct. Syst. 23(3), B4016013 (2017)

    Article  Google Scholar 

  6. Chen, J.G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W.T., Buyukozturk, O.: Structural modal identification through high speed camera video: motion magnification. In: De Clerck, J. (ed.) Topics in Modal Analysis I, Volume 7. CPSEMS, pp. 191–197. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04753-9_19

    Chapter  Google Scholar 

  7. Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T., Buyukozturk, O.: Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vib. 345, 58–71 (2015)

    Article  Google Scholar 

  8. Chen, J.G., Wadhwa, N., Durand, F., Freeman, W.T., Buyukozturk, O.: Developments with motion magnification for structural modal identification through camera video. In: Caicedo, J., Pakzad, S. (eds.) Dynamics of Civil Structures, Volume 2. CPSEMS, pp. 49–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15248-6_5

    Chapter  Google Scholar 

  9. Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G.J., Durand, F., Freeman, W.T.: The visual microphone: passive recovery of sound from video. ACM Trans. Graph. (SIGGRAPH) (2014)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  11. Fan, W., et al.: Robotically surgical vessel localization using robust hybrid video motion magnification. IEEE Robot. Autom. Lett. 6(2), 1567–1573 (2021)

    Article  Google Scholar 

  12. Freeman, W.T., Adelson, E.H., Heeger, D.J.: Motion without movement. ACM SIGGRAPH 25(4), 27–30 (1991)

    Article  Google Scholar 

  13. Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  14. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  15. Ha, H., et al.: Revisiting learning-based video motion magnification for real-time processing (2024)

    Google Scholar 

  16. Janatka, M., Marcus, H.J., Dorward, N.L., Stoyanov, D.: Surgical video motion magnification with suppression of instrument artefacts. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 353–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_34

    Chapter  Google Scholar 

  17. Lado-Roigé, R., Pérez, M.A.: STB-VMM: swin transformer based video motion magnification. Knowl.-Based Syst. 269, 110493 (2023)

    Article  Google Scholar 

  18. Li, B., et al.: Computational discovery of microstructured composites with optimal stiffness-toughness trade-offs. Sci. Adv. 10(5) (2024)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, C., Torralba, A., Freeman, W.T., Durand, F., Adelson, E.H.: Motion magnification. ACM Trans. Graph. (TOG) 24(3), 519–526 (2005)

    Article  Google Scholar 

  21. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)

    Google Scholar 

  22. Luo, Y., Zhang, W., Fan, Y., Han, Y., Li, W., Acheaw, E.: Analysis of vibration characteristics of centrifugal pump mechanical seal under wear and damage degree. Shock. Vib. 2021, 1–9 (2021)

    Google Scholar 

  23. Moya-Albor, E., Brieva, J., Ponce, H., Martínez-Villaseñor, L.: A non-contact heart rate estimation method using video magnification and neural networks. IEEE Instrum. Measur. Mag. 23(4), 56–62 (2020)

    Article  Google Scholar 

  24. Oh, T.-H., et al.: Learning-based video motion magnification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 663–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_39

    Chapter  Google Scholar 

  25. Oliveto, G., Santini, A., Tripodi, E.: Complex modal analysis of a flexural vibrating beam with viscous end conditions. J. Sound Vib. 200(3), 327–345 (1997)

    Article  Google Scholar 

  26. Pan, Z., Geng, D., Owens, A.: Self-supervised motion magnification by backpropagating through optical flow. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  27. Qiu, Q., Lau, D.: Defect detection in FRP-bonded structural system via phase-based motion magnification technique. Struct. Control Health Monit. 25(12), e2259 (2018)

    Article  Google Scholar 

  28. Sarrafi, A., Mao, Z., Niezrecki, C., Poozesh, P.: Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)

    Article  Google Scholar 

  29. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of International Conference on Image Processing, vol. 3, pp. 444–447. IEEE (1995)

    Google Scholar 

  30. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)

    Article  MathSciNet  Google Scholar 

  31. Singh, J., Murala, S., Kosuru, G.: Multi domain learning for motion magnification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13914–13923 (2023)

    Google Scholar 

  32. Śmieja, M., Mamala, J., Prażnowski, K., Ciepliński, T., Szumilas, Ł: Motion magnification of vibration image in estimation of technical object condition-review. Sensors 21(19), 6572 (2021)

    Article  Google Scholar 

  33. Takeda, S., Akagi, Y., Okami, K., Isogai, M., Kimata, H.: Video magnification in the wild using fractional anisotropy in temporal distribution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  34. Takeda, S., Isogai, M., Shimizu, S., Kimata, H.: Local riesz pyramid for faster phase-based video magnification. IEICE Trans. Inf. Syst. 103(10), 2036–2046 (2020)

    Article  Google Scholar 

  35. Takeda, S., Niwa, K., Isogawa, M., Shimizu, S., Okami, K., Aono, Y.: Bilateral video magnification filter. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  36. Takeda, S., Okami, K., Mikami, D., Isogai, M., Kimata, H.: Jerk-aware video acceleration magnification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  37. Tilbrook, M., Rozenburg, K., Steffler, E., Rutgers, L., Hoffman, M.: Crack propagation paths in layered, graded composites. Compos. B Eng. 37(6), 490–498 (2006)

    Article  Google Scholar 

  38. Vernekar, K., Kumar, H., Gangadharan, K.: Gear fault detection using vibration analysis and continuous wavelet transform. Procedia Mater. Sci. 5, 1846–1852 (2014)

    Article  Google Scholar 

  39. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video motion processing. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013)

    Article  Google Scholar 

  40. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast phase-based video magnification. In: IEEE International Conference on Computational Photography (ICCP). IEEE (2014)

    Google Scholar 

  41. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  42. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)

    Article  Google Scholar 

  43. Yang, B.S., Lim, D.S., Tan, A.C.C.: Vibex: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table. Expert Syst. Appl. 28(4), 735–742 (2005)

    Article  Google Scholar 

  44. Zhang, Y., Pintea, S.L., Van Gemert, J.C.: Video acceleration magnification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant (No. RS-2022-II220290 (2022-0-00290), Visual Intelligence for Space-Time Understanding and Generation based on Multi-layered Visual Common Sense); No. RS-2019-II191906, Artificial Intelligence Graduate School Program (POSTECH), and National Research Foundation of Korea (NRF) grant (No. RS-2024-00358135, Corner Vision: Learning to Look Around the Corner through Multi-modal Signals) funded by the Korea government (MSIT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon Byung-Ki .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18011 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Byung-Ki, K., Hyun-Bin, O., Jun-Seong, K., Ha, H., Oh, TH. (2025). Learning-based Axial Video Motion Magnification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15112. Springer, Cham. https://doi.org/10.1007/978-3-031-72949-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72949-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72948-5

  • Online ISBN: 978-3-031-72949-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics