Abstract
Video motion magnification amplifies invisible small motions to be perceptible, which provides humans with a spatially dense and holistic understanding of small motions in the scene of interest. This is based on the premise that magnifying small motions enhances the legibility of motions. In the real world, however, vibrating objects often possess convoluted systems that have complex natural frequencies, modes, and directions. Existing motion magnification often fails to improve legibility since the intricate motions still retain complex characteristics even after being magnified, which likely distracts us from analyzing them. In this work, we focus on improving legibility by proposing a new concept, axial video motion magnification, which magnifies decomposed motions along the user-specified direction. Axial video motion magnification can be applied to various applications where motions of specific axes are critical, by providing simplified and easily readable motion information. To achieve this, we propose a novel Motion Separation Module that enables the disentangling and magnifying of motion representation along axes of interest. Furthermore, we build a new synthetic training dataset for our task that is generalized to real data. Our proposed method improves the legibility of resulting motions along certain axes by adding a new feature: user controllability. In addition, axial video motion magnification is a more generalized concept; thus, our method can be directly adapted to the generic motion magnification and achieves favorable performance against competing methods. The code and dataset are available on our project page: https://axial-momag.github.io/axial-momag/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We reproduced all the results using the codes publicly accessible.
References
Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2013)
Brattoli, B., et al.: Unsupervised behaviour analysis and magnification (UBAM) using deep learning. Nat. Mach. Intell. 3(6), 495–506 (2021)
Brodnik, N., et al.: Fracture diodes: directional asymmetry of fracture toughness. Phys. Rev. Lett. 126(2), 025503 (2021)
Cha, Y.J., Chen, J.G., Büyüköztürk, O.: Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng. Struct. 132, 300–313 (2017)
Chen, J.G., Davis, A., Wadhwa, N., Durand, F., Freeman, W.T., Büyüköztürk, O.: Video camera-based vibration measurement for civil infrastructure applications. J. Infrastruct. Syst. 23(3), B4016013 (2017)
Chen, J.G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W.T., Buyukozturk, O.: Structural modal identification through high speed camera video: motion magnification. In: De Clerck, J. (ed.) Topics in Modal Analysis I, Volume 7. CPSEMS, pp. 191–197. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04753-9_19
Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T., Buyukozturk, O.: Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vib. 345, 58–71 (2015)
Chen, J.G., Wadhwa, N., Durand, F., Freeman, W.T., Buyukozturk, O.: Developments with motion magnification for structural modal identification through camera video. In: Caicedo, J., Pakzad, S. (eds.) Dynamics of Civil Structures, Volume 2. CPSEMS, pp. 49–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15248-6_5
Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G.J., Durand, F., Freeman, W.T.: The visual microphone: passive recovery of sound from video. ACM Trans. Graph. (SIGGRAPH) (2014)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Fan, W., et al.: Robotically surgical vessel localization using robust hybrid video motion magnification. IEEE Robot. Autom. Lett. 6(2), 1567–1573 (2021)
Freeman, W.T., Adelson, E.H., Heeger, D.J.: Motion without movement. ACM SIGGRAPH 25(4), 27–30 (1991)
Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)
Ha, H., et al.: Revisiting learning-based video motion magnification for real-time processing (2024)
Janatka, M., Marcus, H.J., Dorward, N.L., Stoyanov, D.: Surgical video motion magnification with suppression of instrument artefacts. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 353–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_34
Lado-Roigé, R., Pérez, M.A.: STB-VMM: swin transformer based video motion magnification. Knowl.-Based Syst. 269, 110493 (2023)
Li, B., et al.: Computational discovery of microstructured composites with optimal stiffness-toughness trade-offs. Sci. Adv. 10(5) (2024)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, C., Torralba, A., Freeman, W.T., Durand, F., Adelson, E.H.: Motion magnification. ACM Trans. Graph. (TOG) 24(3), 519–526 (2005)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)
Luo, Y., Zhang, W., Fan, Y., Han, Y., Li, W., Acheaw, E.: Analysis of vibration characteristics of centrifugal pump mechanical seal under wear and damage degree. Shock. Vib. 2021, 1–9 (2021)
Moya-Albor, E., Brieva, J., Ponce, H., Martínez-Villaseñor, L.: A non-contact heart rate estimation method using video magnification and neural networks. IEEE Instrum. Measur. Mag. 23(4), 56–62 (2020)
Oh, T.-H., et al.: Learning-based video motion magnification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 663–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_39
Oliveto, G., Santini, A., Tripodi, E.: Complex modal analysis of a flexural vibrating beam with viscous end conditions. J. Sound Vib. 200(3), 327–345 (1997)
Pan, Z., Geng, D., Owens, A.: Self-supervised motion magnification by backpropagating through optical flow. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Qiu, Q., Lau, D.: Defect detection in FRP-bonded structural system via phase-based motion magnification technique. Struct. Control Health Monit. 25(12), e2259 (2018)
Sarrafi, A., Mao, Z., Niezrecki, C., Poozesh, P.: Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)
Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of International Conference on Image Processing, vol. 3, pp. 444–447. IEEE (1995)
Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)
Singh, J., Murala, S., Kosuru, G.: Multi domain learning for motion magnification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13914–13923 (2023)
Śmieja, M., Mamala, J., Prażnowski, K., Ciepliński, T., Szumilas, Ł: Motion magnification of vibration image in estimation of technical object condition-review. Sensors 21(19), 6572 (2021)
Takeda, S., Akagi, Y., Okami, K., Isogai, M., Kimata, H.: Video magnification in the wild using fractional anisotropy in temporal distribution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Takeda, S., Isogai, M., Shimizu, S., Kimata, H.: Local riesz pyramid for faster phase-based video magnification. IEICE Trans. Inf. Syst. 103(10), 2036–2046 (2020)
Takeda, S., Niwa, K., Isogawa, M., Shimizu, S., Okami, K., Aono, Y.: Bilateral video magnification filter. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Takeda, S., Okami, K., Mikami, D., Isogai, M., Kimata, H.: Jerk-aware video acceleration magnification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Tilbrook, M., Rozenburg, K., Steffler, E., Rutgers, L., Hoffman, M.: Crack propagation paths in layered, graded composites. Compos. B Eng. 37(6), 490–498 (2006)
Vernekar, K., Kumar, H., Gangadharan, K.: Gear fault detection using vibration analysis and continuous wavelet transform. Procedia Mater. Sci. 5, 1846–1852 (2014)
Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video motion processing. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013)
Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast phase-based video magnification. In: IEEE International Conference on Computational Photography (ICCP). IEEE (2014)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)
Yang, B.S., Lim, D.S., Tan, A.C.C.: Vibex: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table. Expert Syst. Appl. 28(4), 735–742 (2005)
Zhang, Y., Pintea, S.L., Van Gemert, J.C.: Video acceleration magnification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Acknowledgment
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant (No. RS-2022-II220290 (2022-0-00290), Visual Intelligence for Space-Time Understanding and Generation based on Multi-layered Visual Common Sense); No. RS-2019-II191906, Artificial Intelligence Graduate School Program (POSTECH), and National Research Foundation of Korea (NRF) grant (No. RS-2024-00358135, Corner Vision: Learning to Look Around the Corner through Multi-modal Signals) funded by the Korea government (MSIT)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Byung-Ki, K., Hyun-Bin, O., Jun-Seong, K., Ha, H., Oh, TH. (2025). Learning-based Axial Video Motion Magnification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15112. Springer, Cham. https://doi.org/10.1007/978-3-031-72949-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-72949-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72948-5
Online ISBN: 978-3-031-72949-2
eBook Packages: Computer ScienceComputer Science (R0)