Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatial-Temporal PDE Networks for Traffic Flow Forecasting

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14950))

  • 490 Accesses

Abstract

Spatial-temporal forecasting is crucial in various domains, including traffic flow prediction for Intelligent Transportation Systems (ITS). Despite the challenges posed by complex spatial-temporal dependencies in traffic networks, Partial Differential Equations (PDEs) have proven effective for capturing traffic dynamics. However, recent trends favor data-driven approaches like Graph Neural Networks (GNNs) for traffic forecasting, often overlooking the principles described by PDEs. In this paper, we propose a Graph Partial Differential Equation Network (GPDE) that integrates PDE principles with GNNs to enhance traffic flow forecasting. Our approach leverages dynamic graph structures based on PDE flux functions, incorporating residual connections and learnable rates for improved model performance. Extensive experiments on real-world traffic datasets demonstrate the superiority of GPDE over existing methods in both short-term and long-term traffic speed prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code for this paper can be found at https://drive.google.com/drive/folders/1FzKPIfORu54vQ2oWDSFjh4tvepIFIEVW?usp=drive_link.

References

  1. Aw, A., Rascle, M.: Resurrection of “second order’’ models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bao, T., Chen, S., Johnson, T.T., Givi, P., Sammak, S., Jia, X.: Physics guided neural networks for spatio-temporal super-resolution of turbulent flows. In: Uncertainty in Artificial Intelligence, pp. 118–128. PMLR (2022)

    Google Scholar 

  3. Bao, T., et al.: Partial differential equation driven dynamic graph networks for predicting stream water temperature. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 11–20. IEEE (2021)

    Google Scholar 

  4. Chen, C., Petty, K., Skabardonis, A., Varaiya, P., Jia, Z.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)

    Article  Google Scholar 

  5. Choi, J., Choi, H., Hwang, J., Park, N.: Graph neural controlled differential equations for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 6367–6374 (2022)

    Google Scholar 

  6. Claudel, C.G., Bayen, A.M.: Guaranteed bounds for traffic flow parameters estimation using mixed lagrangian-eulerian sensing. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 636–645. IEEE (2008)

    Google Scholar 

  7. Di, X., Shi, R., Mo, Z., Fu, Y.: Physics-informed deep learning for traffic state estimation: a survey and the outlook. Algorithms 16(6), 305 (2023)

    Article  Google Scholar 

  8. Fang, Z., Long, Q., Song, G., Xie, K.: Spatial-temporal graph ode networks for traffic flow forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 364–373 (2021)

    Google Scholar 

  9. Gloudemans, D., et al.: I-24 motion: an instrument for freeway traffic science. Transp. Res. Part C: Emerging Technol. 155, 104311 (2023)

    Article  Google Scholar 

  10. Greenshields, B.D., Bibbins, J., Channing, W., Miller, H.: A study of traffic capacity. In: Highway Research Board Proceedings, vol. 14, pp. 448–477. Washington, DC (1935)

    Google Scholar 

  11. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Jones, N.: How machine learning could help to improve climate forecasts. Nature 548(7668) (2017)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  15. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  16. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  17. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: AAAI’16 (2016)

    Google Scholar 

  18. Long, Q., Jin, Y., Wu, Y., Song, G.: Theoretically improving graph neural networks via anonymous walk graph kernels. In: Proceedings of the Web Conference 2021, pp. 1204–1214 (2021)

    Google Scholar 

  19. Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  Google Scholar 

  20. Pan, Y.A., Guo, J., Chen, Y., Li, S., Li, W., et al.: Incorporating traffic flow model into a deep learning method for traffic state estimation: a hybrid stepwise modeling framework. J. Adv. Transp. 2022 (2022)

    Google Scholar 

  21. Plötz, P., Jakobsson, N., Sprei, F.: On the distribution of individual daily driving distances. Transp. Res. Part B: Methodological 101, 213–227 (2017)

    Article  Google Scholar 

  22. Rascle, M.: An improved macroscopic model of traffic flow: derivation and links with the lighthill-whitham model. Math. Comput. Model. 35(5–6), 581–590 (2002)

    Article  MathSciNet  Google Scholar 

  23. Shi, R., Mo, Z., Di, X.: Physics-informed deep learning for traffic state estimation: a hybrid paradigm informed by second-order traffic models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 540–547 (2021)

    Google Scholar 

  24. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 914–921 (2020)

    Google Scholar 

  25. Wang, J., Jiang, J., Jiang, W., Li, C., Zhao, W.X.: Libcity: An open library for traffic prediction. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 145–148 (2021)

    Google Scholar 

  26. Wang, X., Chen, C., Min, Y., He, J., Yang, B., Zhang, Y.: Efficient metropolitan traffic prediction based on graph recurrent neural network. arXiv preprint arXiv:1811.00740 (2018)

  27. Wu, Z., Pan, S., Long, G., et al.: Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121 (2019)

  28. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5668–5675 (2019)

    Google Scholar 

  29. Yao, H., Wu, F., Ke, J., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. In: AAAI (2018)

    Google Scholar 

  30. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  31. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: A generic approach for extreme condition traffic forecasting. In: SDM’17 (2017)

    Google Scholar 

  32. Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. art B: Methodological 36(3), 275–290 (2002)

    Article  Google Scholar 

  33. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  34. Zhang, X., Huang, C., et al.: Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In: CIKM’18 (2020)

    Google Scholar 

  35. Zhang, Y., Quinones-Grueiro, M., Zhang, Z., Wang, Y., Barbour, W., Biswas, G., Work, D.: Marvel: Multi-agent reinforcement-learning for large-scale variable speed limits. arXiv preprint arXiv:2310.12359 (2023)

Download references

Acknowledgments

The work was partially supported by NSF awards #2028001 and #2421839. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, T., Wei, H., Ji, J., Work, D., Johnson, T.T. (2024). Spatial-Temporal PDE Networks for Traffic Flow Forecasting. In: Bifet, A., Krilavičius, T., Miliou, I., Nowaczyk, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14950. Springer, Cham. https://doi.org/10.1007/978-3-031-70381-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70381-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70380-5

  • Online ISBN: 978-3-031-70381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics