Abstract
The prevalence and the rapid growth of interconnected data have sparked the rise of graph models and systems focusing on the management of large graphs now available both in research and industry. The property graph model allows the representation of information through multigraphs where nodes and edges can have labels and properties (i.e., key-value pairs). The model is becoming very popular and widespread, however related data management technology still faces many challenges, limiting the wide adoption of the model. In this vision paper, we present directions for future work in the domain focusing on the availability of a single declarative graph language, data integration, and scalable data processing. In our view, these areas represent key challenges for advancing research and practical solutions in the domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sakr, S., et al.: The future is big graphs: a community view on graph processing systems. Commun. ACM 64(9), 62–71 (2021)
Hegeman, T., Iosup, A.: Survey of graph analysis applications. arXiv preprint arXiv:1807.00382 (2018)
RDF-star and SPARQL-star. Draft Community Group Report. https://w3c.github.io/rdf-star/cg-spec/editors_draft.html. Accessed Apr 2024
NeoSemantics, Neo4j RDF & Semantics toolkit. https://neo4j.com/labs/neosemantics/. Accessed Apr 2024
Record investment in Neo4j suggests, maybe it IS all about relationships. https://www.hfsresearch.com/research/record-investment-in-neo4j-suggests-maybe-it-is-all-about-relationships/. Accessed 26 Feb 2024
Gartner Identifies Top 10 Data and Analytics Technologies Trends. https://www.gartner.com/en/newsroom/press-releases/2021-03-16-gartner-identifies-top-10-data-and-analytics-technologies-trends-for-2021
SPARQL 1.1 Query Language, W3C Recommendation. https://www.w3.org/TR/sparql11-query/. Accessed Mar 2024
Nadime, F., et al.: Cypher: an evolving query language for property graphs. In: Proceedings of the 2018 International Conference on Management of Data (SIGMOD 2018), pp. 1433–1445. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3183713.3190657
van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph query language. In: Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems (2016)
Deutsch, A.: Querying graph databases with the GSQL query language. SBBD 313 (2018)
GQL Standards. https://www.gqlstandards.org/. Accessed 26 Feb 2024
Lissandrini, M., Mottin, D., Palpanas, T., Velegrakis, Y.: Graph-query suggestions for knowledge graph exploration. In: Proceedings of the Web Conference 2020 (WWW 2020), pp. 2549–2555. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3366423.3380005
Deutsch, A., et al.: Graph pattern matching in GQL and SQL/PGQ. In: Proceedings of the 2022 International Conference on Management of Data (SIGMOD 2022), pp. 2246–2258. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3514221.3526057
Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The ICS-FORTH RDFSuite: managing voluminous RDF description bases. In: SemWeb 2001 (2001)
Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: a declarative query language for RDF. In: WWW, pp. 592–603 (2002)
Kellou-Menouer, K., Kardoulakis, N., Troullinou, G., et al.: A survey on semantic schema discovery. VLDB J. 31, 675–710 (2022)
Rahm, E., Bellahsene, Z., Bonifati, A. (eds.): Schema Matching and Mapping. Springer, Cham (2011)
Renzo, A., et al.: PG-keys: keys for property graphs. In: Proceedings of the 2021 International Conference on Management of Data (SIGMOD 2021), pp. 2423–2436. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3448016.3457561
Boneva, I., Bonifati, A., Ciucanu, R.: Graph data exchange with target constraints. In: EDBT/ICDT Workshops, pp. 171–176 (2015)
X3ML Toolkit. https://www.ics.forth.gr/isl/x3ml-toolkit. Accessed 26 Feb 2024
Mhedhbi, A., Lissandrini, M., Kuiper, L., Waudby, J., Szárnyas, G.: LSQB: a large-scale subgraph query benchmark. In: Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA) (GRADES-NDA 2021), Article no. 8, pp. 1–11. Association for Computing Machinery, New York (2021)
Lissandrini, M., Mottin, D., Hose, K., Pedersen, T.B.: Knowledge graph exploration systems: are we lost? In: CIDR (2022)
Kardoulakis, N., et al.: HInT: hybrid and incremental type discovery for large RDF data sources. In: SSDBM, pp. 97–108 (2021)
Troullinou, G., Agathangelos, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: DIAERESIS: RDF data partitioning and query processing on SPARK. Semant. Web J. (2024)
Bonifati, A., Dumbrava, S., Kondylakis, H., Troullinou, G., Vassiliou, G: PING: progressive querying on RDF graphs. In: ISWC (Posters/Demos/Industry) (2023)
Troullinou, G., Kondylakis, H., Lissandrini, M., Mottin, D.: SOFOS: demonstrating the challenges of materialized view selection on knowledge graphs. In: SIGMOD Conference (2021)
Acknowledgments
The work reported in this paper is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number: 16819).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kondylakis, H., Efthymiou, V., Troullinou, G., Ymeralli, E., Plexousakis, D. (2024). Property Graphs at Scale: A Roadmap and Vision for the Future (Short Paper). In: Almeida, J.P.A., Di Ciccio, C., Kalloniatis, C. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in Business Information Processing, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-031-61003-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-61003-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61002-8
Online ISBN: 978-3-031-61003-5
eBook Packages: Computer ScienceComputer Science (R0)