Abstract
The use of automatic short answer grading (ASAG) models may help alleviate the time burden of grading while encouraging educators to frequently incorporate open-ended items in their curriculum. However, current state-of-the-art ASAG models are large neural networks (NN) often described as “black box”, providing no explanation for which characteristics of an input are important for the produced output. This inexplicable nature can be frustrating to teachers and students when trying to interpret, or learn from an automatically-generated grade. To create a powerful yet intelligible ASAG model, we experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model. We use a Knowledge Integration (KI) framework from the learning sciences to guide feature engineering to create inputs that reflect whether a student includes certain ideas in their response. We hypothesize that indicating the inclusion (or exclusion) of predefined ideas as features will be sufficient for the NAM to have good predictive power and interpretability, as this may guide a human scorer using a KI rubric. We compare the performance of the NAM with another explainable model, logistic regression, using the same features, and to a non-explainable neural model, DeBERTa, that does not require feature engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Frosst, N., Zhang, X., Caruana, R., Hinton, G.E.: Neural additive models: Interpretable machine learning with neural nets. arXiv preprint arXiv:2004.13912 (2020)
Alonso-Fernández, C., Martínez-Ortiz, I., Caballero, R., Freire, M., Fernández-Manjón, B.: Predicting students’ knowledge after playing a serious game based on learning analytics data: A case study. J. Comput. Assist. Learn. 36(3), 350–358 (2020)
Bertsch, S., Pesta, B.J., Wiscott, R., McDaniel, M.A.: The generation effect: a meta-analytic review. Mem. Cogn. 35(2), 201–210 (2007)
Bouchiat, K., Immer, A., Yèche, H., Rätsch, G., Fortuin, V.: Laplace-approximated neural additive models: improving interpretability with bayesian inference. arXiv preprint arXiv:2305.16905 (2023)
Chen, D., Ye, W.: Monotonic neural additive models: Pursuing regulated machine learning models for credit scoring. In: Proceedings of the Third ACM International Conference on AI in Finance, pp. 70–78 (2022)
Chi, M.T., De Leeuw, N., Chiu, M.H., LaVancher, C.: Eliciting self-explanations improves understanding. Cogn. Sci. 18(3), 439–477 (1994)
Condor, A., Pardos, Z.: A deep reinforcement learning approach to automatic formative feedback. International Educational Data Mining Society (2022)
Condor, A., Pardos, Z., Linn, M.: Representing scoring rubrics as graphs for automatic short answer grading. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) AIED 2022. LNCS, vol. 13355, pp. 354–365. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11644-5_29
Deho, O.B., Zhan, C., Li, J., Liu, J., Liu, L., Le Duy, T.: How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics? Br. J. Edu. Technol. 53(4), 822–843 (2022)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998). https://doi.org/10.1162/089976698300017197
Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000)
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision making and a “right to explanation’’. AI Mag. 38(2), 781–796 (2017)
Gunning, D., Aha, D.: Darpa’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
Haller, S., Aldea, A., Seifert, C., Strisciuglio, N.: Survey on automated short answer grading with deep learning: from word embeddings to transformers. arXiv preprint arXiv:2204.03503 (2022)
Hancock, C.L.: Implementing the assessment standards for school mathematics: enhancing mathematics learning with open-ended questions. Math. Teach. 88(6), 496–499 (1995)
He, P., Gao, J., Chen, W.: DeBERTaV3: improving DeBERTa using ELECTRA-style pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543 (2021)
Jo, W., Kim, D.: Neural additive models for nowcasting. arXiv preprint arXiv:2205.10020 (2022)
Kayid, A., Frosst, N., Hinton, G.E.: Neural additive models library (2020)
Kelley, K., Preacher, K.J.: On effect size. Psychol. Methods 17(2), 137 (2012)
Le, C.V., Pardos, Z.A., Meyer, S.D., Thorp, R.: Communication at scale in a MOOC using predictive engagement analytics. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 239–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93843-1_18
Linn, M.C.: Designing the knowledge integration environment. Int. J. Sci. Educ. 22(8), 781–796 (2000)
Luber, M., Thielmann, A., Säfken, B.: Structural neural additive models: enhanced interpretable machine learning. arXiv preprint arXiv:2302.09275 (2023)
Mariotti, E., Moral, J.M.A., Gatt, A.: Exploring the balance between interpretability and performance with carefully designed constrainable neural additive models. Inf. Fus. 99, 101882 (2023)
Misiejuk, K., Wasson, B., Egelandsdal, K.: Using learning analytics to understand student perceptions of peer feedback. Comput. Hum. Behav. 117, 106658 (2021)
Moslehi, S., Mahjub, H., Farhadian, M., Soltanian, A.R., Mamani, M.: Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in hamadan, iran. BMC Med. Res. Methodol. 22(1), 339 (2022)
Poulton, A., Eliens, S.: Explaining transformer-based models for automatic short answer grading. In: Proceedings of the 5th International Conference on Digital Technology in Education, pp. 110–116 (2021)
Prize, A.S.A.: The Hewlett foundation: automated essay scoring (2019)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)
Riordan, B., et al.: An empirical investigation of neural methods for content scoring of science explanations. In: Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications (2020)
Schlippe, T., Stierstorfer, Q., Koppel, M.t., Libbrecht, P.: Explainability in automatic short answer grading. In: Cheng, E.C.K., Wang, T., Schlippe, T., Beligiannis, G.N. (eds.) AIET 2022. LNCS, vol. 154, pp. 69–87. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-8040-4_5
Singh, C., et al.: Explaining black box text modules in natural language with language models. arXiv preprint arXiv:2305.09863 (2023)
Tornqvist, M., Mahamud, M., Guzman, E.M., Farazouli, A.: ExASAG: explainable framework for automatic short answer grading. In: Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pp. 361–371 (2023)
Utkin, L., Konstantinov, A.: An extension of the neural additive model for uncertainty explanation of machine learning survival models. In: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M. (eds.) Cyber-Physical Systems: Intelligent Models and Algorithms, vol. 417, pp. 3–13. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95116-0_1
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 563–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_51
Zeng, Z., Li, X., Gasevic, D., Chen, G.: Do deep neural nets display human-like attention in short answer scoring? In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 191–205 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Condor, A., Pardos, Z. (2024). Explainable Automatic Grading with Neural Additive Models. In: Olney, A.M., Chounta, IA., Liu, Z., Santos, O.C., Bittencourt, I.I. (eds) Artificial Intelligence in Education. AIED 2024. Lecture Notes in Computer Science(), vol 14829. Springer, Cham. https://doi.org/10.1007/978-3-031-64302-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-64302-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64301-9
Online ISBN: 978-3-031-64302-6
eBook Packages: Computer ScienceComputer Science (R0)