Abstract
Advances in the Visually-rich Document Understanding (VrDU) field and particularly the Key-Information Extraction (KIE) task are marked with the emergence of efficient Transformer-based approaches such as the LayoutLM models. Despite the good performance of KIE models when fine-tuned on public benchmarks, they still struggle to generalize on complex real-life use-cases lacking sufficient document annotations. Our research highlighted that KIE standard benchmarks such as SROIE and FUNSD contain significant similarity between training and testing documents and can be adjusted to better evaluate the generalization of models.
In this work, we designed experiments to quantify the information redundancy in public benchmarks, revealing a 75% template replication in SROIE’s official test set and 16% in FUNSD’s. We also proposed re-sampling strategies to provide benchmarks more representative of the generalization ability of models. We showed that models not suited for document analysis struggle on the adjusted splits dropping on average 10,5% F1 score on SROIE and 3.5% on FUNSD compared to multi-modal models dropping only 7,5% F1 on SROIE and 0.5% F1 on FUNSD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: end-to-end transformer for document understanding. CoRR abs/2106.11539 (2021). https://arxiv.org/abs/2106.11539
Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)
Augenstein, I., Derczynski, L., Bontcheva, K.: Generalisation in named entity recognition: a quantitative analysis. Comput. Speech Lang. 44, 61–83 (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (2019). https://aclanthology.org/N19-1423.pdf
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2020). https://arxiv.org/abs/2010.11929
Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., Smith, N.A.: Annotation artifacts in natural language inference data. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 107–112. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-2017, https://aclanthology.org/N18-2017
Hao, L., Gao, L., Yi, X., Tang, Z.: A table detection method for pdf documents based on convolutional neural networks. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 287–292 (2016). https://doi.org/10.1109/DAS.2016.23
Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. CoRR abs/1502.07058 (2015). http://arxiv.org/abs/1502.07058
Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: Layoutlmv3: pre-training for document AI with unified text and image masking. In: Proceedings of the 30th ACM International Conference on Multimedia, MM 2022, pp. 4083–4091. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3503161.3548112
Huang, Z., et al.: Icdar 2019 competition on scanned receipt OCR and information extraction, pp. 1516–1520 (2019). https://arxiv.org/pdf/2103.10213.pdf
Jaume, G., Kemal Ekenel, H., Thiran, J.P.: Funsd: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6 (2019). https://doi.org/10.1109/ICDARW.2019.10029
Kim, G., et al.: Ocr-free document understanding transformer (2022)
Kim, W., Son, B., Kim, I.: Vilt: vision-and-language transformer without convolution or region supervision (2021). https://arxiv.org/abs/2102.03334
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)
Lee, K., et al.: Pix2struct: screenshot parsing as pretraining for visual language understanding (2022)
Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. In: NAACL (2019)
Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach (2019). https://doi.org/10.48550/ARXIV.1907.11692, https://arxiv.org/abs/1907.11692
Mathew, M., Karatzas, D., Manmatha, R., Jawahar, C.V.: Docvqa: a dataset for VQA on document images. CoRR abs/2007.00398 (2020). https://arxiv.org/abs/2007.00398
Mghabbar, I., Ratnamogan, P.: Building a multi-domain neural machine translation model using knowledge distillation. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2116–2123. IOS Press (2020). https://doi.org/10.3233/FAIA200335
Moosavi, N.S., Strube, M.: Using linguistic features to improve the generalization capability of neural coreference resolvers. arXiv preprint arXiv:1708.00160 (2017)
Park, S., et al.: Cord: a consolidated receipt dataset for post-ocr parsing (2019)
Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared task: modeling multilingual unrestricted coreference in ontonotes. In: Joint Conference on EMNLP and CoNLL-Shared Task, pp. 1–40 (2012)
Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In: Third Workshop on Very Large Corpora (1995). https://aclanthology.org/W95-0107
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: language-independent named entity recognition. arXiv preprint cs/0306050 (2003)
Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1162–1167 (2017). https://doi.org/10.1109/ICDAR.2017.192
Soto, C., Yoo, S.: Visual detection with context for document layout analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3464–3470. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1348, https://aclanthology.org/D19-1348
Stanislawek, T., et al.: Kleister: key information extraction datasets involving long documents with complex layouts. CoRR abs/2105.05796 (2021). https://arxiv.org/abs/2105.05796
Taillé, B., Guigue, V., Gallinari, P.: Contextualized embeddings in named-entity recognition: an empirical study on generalization. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 383–391. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_48
Toshniwal, S., Xia, P., Wiseman, S., Livescu, K., Gimpel, K.: On generalization in coreference resolution. In: Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference, pp. 111–120. Association for Computational Linguistics, Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.crac-1.12, https://aclanthology.org/2021.crac-1.12
Vu, H.M., Nguyen, D.T.: Revising FUNSD dataset for key-value detection in document images. CoRR abs/2010.05322 (2020), https://arxiv.org/abs/2010.05322
Wang, J., Jin, L., Ding, K.: Lilt: a simple yet effective language-independent layout transformer for structured document understanding (2022). https://doi.org/10.48550/ARXIV.2202.13669, https://arxiv.org/abs/2202.13669
Wang, J., Jin, L., Ding, K.: Lilt: a simple yet effective language-independent layout transformer for structured document understanding. arXiv preprint arXiv:2202.13669 (2022)
Weischedel, R., et al.: Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia, PA 23 (2013)
Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2579–2591. Association for Computational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.201, https://aclanthology.org/2021.acl-long.201
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: Layoutlm: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2020, pp. 1192–1200. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3394486.3403172
Xu, Y., et al.: Layoutxlm: multimodal pre-training for multilingual visually-rich document understanding. arXiv preprint arXiv:2104.08836 (2021)
Yu, W., Lu, N., Qi, X., Gong, P., Xiao, R.: Pick: processing key information extraction from documents using improved graph learning-convolutional networks (2020). https://arxiv.org/abs/2004.07464
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Laatiri, S., Ratnamogan, P., Tang, J., Lam, L., Vanhuffel, W., Caspani, F. (2023). Information Redundancy and Biases in Public Document Information Extraction Benchmarks. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14189. Springer, Cham. https://doi.org/10.1007/978-3-031-41682-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-41682-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41681-1
Online ISBN: 978-3-031-41682-8
eBook Packages: Computer ScienceComputer Science (R0)