Nothing Special   »   [go: up one dir, main page]

Skip to main content

Information Redundancy and Biases in Public Document Information Extraction Benchmarks

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14189))

Included in the following conference series:

  • 874 Accesses

Abstract

Advances in the Visually-rich Document Understanding (VrDU) field and particularly the Key-Information Extraction (KIE) task are marked with the emergence of efficient Transformer-based approaches such as the LayoutLM models. Despite the good performance of KIE models when fine-tuned on public benchmarks, they still struggle to generalize on complex real-life use-cases lacking sufficient document annotations. Our research highlighted that KIE standard benchmarks such as SROIE and FUNSD contain significant similarity between training and testing documents and can be adjusted to better evaluate the generalization of models.

In this work, we designed experiments to quantify the information redundancy in public benchmarks, revealing a 75% template replication in SROIE’s official test set and 16% in FUNSD’s. We also proposed re-sampling strategies to provide benchmarks more representative of the generalization ability of models. We showed that models not suited for document analysis struggle on the adjusted splits dropping on average 10,5% F1 score on SROIE and 3.5% on FUNSD compared to multi-modal models dropping only 7,5% F1 on SROIE and 0.5% F1 on FUNSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: end-to-end transformer for document understanding. CoRR abs/2106.11539 (2021). https://arxiv.org/abs/2106.11539

  2. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  3. Augenstein, I., Derczynski, L., Bontcheva, K.: Generalisation in named entity recognition: a quantitative analysis. Comput. Speech Lang. 44, 61–83 (2017)

    Article  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (2019). https://aclanthology.org/N19-1423.pdf

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2020). https://arxiv.org/abs/2010.11929

  6. Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., Smith, N.A.: Annotation artifacts in natural language inference data. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 107–112. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-2017, https://aclanthology.org/N18-2017

  7. Hao, L., Gao, L., Yi, X., Tang, Z.: A table detection method for pdf documents based on convolutional neural networks. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 287–292 (2016). https://doi.org/10.1109/DAS.2016.23

  8. Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. CoRR abs/1502.07058 (2015). http://arxiv.org/abs/1502.07058

  9. Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: Layoutlmv3: pre-training for document AI with unified text and image masking. In: Proceedings of the 30th ACM International Conference on Multimedia, MM 2022, pp. 4083–4091. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3503161.3548112

  10. Huang, Z., et al.: Icdar 2019 competition on scanned receipt OCR and information extraction, pp. 1516–1520 (2019). https://arxiv.org/pdf/2103.10213.pdf

  11. Jaume, G., Kemal Ekenel, H., Thiran, J.P.: Funsd: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6 (2019). https://doi.org/10.1109/ICDARW.2019.10029

  12. Kim, G., et al.: Ocr-free document understanding transformer (2022)

    Google Scholar 

  13. Kim, W., Son, B., Kim, I.: Vilt: vision-and-language transformer without convolution or region supervision (2021). https://arxiv.org/abs/2102.03334

  14. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  15. Lee, K., et al.: Pix2struct: screenshot parsing as pretraining for visual language understanding (2022)

    Google Scholar 

  16. Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. In: NAACL (2019)

    Google Scholar 

  17. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach (2019). https://doi.org/10.48550/ARXIV.1907.11692, https://arxiv.org/abs/1907.11692

  18. Mathew, M., Karatzas, D., Manmatha, R., Jawahar, C.V.: Docvqa: a dataset for VQA on document images. CoRR abs/2007.00398 (2020). https://arxiv.org/abs/2007.00398

  19. Mghabbar, I., Ratnamogan, P.: Building a multi-domain neural machine translation model using knowledge distillation. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2116–2123. IOS Press (2020). https://doi.org/10.3233/FAIA200335

  20. Moosavi, N.S., Strube, M.: Using linguistic features to improve the generalization capability of neural coreference resolvers. arXiv preprint arXiv:1708.00160 (2017)

  21. Park, S., et al.: Cord: a consolidated receipt dataset for post-ocr parsing (2019)

    Google Scholar 

  22. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared task: modeling multilingual unrestricted coreference in ontonotes. In: Joint Conference on EMNLP and CoNLL-Shared Task, pp. 1–40 (2012)

    Google Scholar 

  23. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In: Third Workshop on Very Large Corpora (1995). https://aclanthology.org/W95-0107

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

  25. Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: language-independent named entity recognition. arXiv preprint cs/0306050 (2003)

    Google Scholar 

  26. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1162–1167 (2017). https://doi.org/10.1109/ICDAR.2017.192

  27. Soto, C., Yoo, S.: Visual detection with context for document layout analysis. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3464–3470. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1348, https://aclanthology.org/D19-1348

  28. Stanislawek, T., et al.: Kleister: key information extraction datasets involving long documents with complex layouts. CoRR abs/2105.05796 (2021). https://arxiv.org/abs/2105.05796

  29. Taillé, B., Guigue, V., Gallinari, P.: Contextualized embeddings in named-entity recognition: an empirical study on generalization. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 383–391. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_48

    Chapter  Google Scholar 

  30. Toshniwal, S., Xia, P., Wiseman, S., Livescu, K., Gimpel, K.: On generalization in coreference resolution. In: Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference, pp. 111–120. Association for Computational Linguistics, Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.crac-1.12, https://aclanthology.org/2021.crac-1.12

  31. Vu, H.M., Nguyen, D.T.: Revising FUNSD dataset for key-value detection in document images. CoRR abs/2010.05322 (2020), https://arxiv.org/abs/2010.05322

  32. Wang, J., Jin, L., Ding, K.: Lilt: a simple yet effective language-independent layout transformer for structured document understanding (2022). https://doi.org/10.48550/ARXIV.2202.13669, https://arxiv.org/abs/2202.13669

  33. Wang, J., Jin, L., Ding, K.: Lilt: a simple yet effective language-independent layout transformer for structured document understanding. arXiv preprint arXiv:2202.13669 (2022)

  34. Weischedel, R., et al.: Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia, PA 23 (2013)

    Google Scholar 

  35. Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2579–2591. Association for Computational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.201, https://aclanthology.org/2021.acl-long.201

  36. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: Layoutlm: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2020, pp. 1192–1200. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3394486.3403172

  37. Xu, Y., et al.: Layoutxlm: multimodal pre-training for multilingual visually-rich document understanding. arXiv preprint arXiv:2104.08836 (2021)

  38. Yu, W., Lu, N., Qi, X., Gong, P., Xiao, R.: Pick: processing key information extraction from documents using improved graph learning-convolutional networks (2020). https://arxiv.org/abs/2004.07464

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seif Laatiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laatiri, S., Ratnamogan, P., Tang, J., Lam, L., Vanhuffel, W., Caspani, F. (2023). Information Redundancy and Biases in Public Document Information Extraction Benchmarks. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14189. Springer, Cham. https://doi.org/10.1007/978-3-031-41682-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41682-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41681-1

  • Online ISBN: 978-3-031-41682-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics