Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unravelling Heterogeneity: A Hybrid Machine Learning Approach to Predict Post-discharge Complications in Cardiothoracic Surgery

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2023)

Abstract

Predicting post-discharge complications in cardiothoracic surgery is of utmost importance to improve clinical outcomes. Machine Learning (ML) techniques have been successfully applied in similar tasks, aiming at short time windows and in specific surgical conditions. However, as the target horizon is extended and the impact of unpredictable external factors rises, the complexity of the task increases, and traditional predictive models struggle to reproduce good performances. This study presents a two-step hybrid learning methodology to address this problem. Building up from identifying unique sub-groups of patients with shared characteristics, we then train individual supervised classification models for each sub-group, aiming at improved prediction accuracy and a more granular understanding of each decision. Our results show that specific sub-groups demonstrate substantially better performance when compared to the baseline model without sub-divisions, while others do not benefit from specialised models. Strategies such as the one presented may catalyse the success of applied ML solutions by contributing to a better understanding of their behaviour in different regions of the data space, leading to an informed decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., Provenchère, S., Montravers, P., Ferdynus, C.: A comparison of a machine learning model with Euroscore II in predicting mortality after elective cardiac surgery: a decision curve analysis. Plos One 12 (2017)

    Google Scholar 

  2. Benedetto, U., Dimagli, A., Sinha, S., Cocomello, L., Gibbison, B., Caputo, M., Gaunt, T.R., Lyon, M., Holmes, C.C., Angelini, G.D.: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 163(6) (2020)

    Google Scholar 

  3. Bertsimas, D., Zhuo, D., Dunn, J., Levine, J., Zuccarelli, E., Smyrnakis, N., Tobota, Z., Maruszewski, B., Fragata, J., Sarris, G.E.: Adverse outcomes prediction for congenital heart surgery: a machine learning approach. World J. Pediatric Congenit. Heart Surg. 12, 453–460 (2021)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  5. Campello, R.J., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, Proceedings, Part II 17, pp. 160–172. Springer (2013)

    Google Scholar 

  6. Caruso, E., Zadra, A.R.: The trade-off between costs and outcome after cardiac surgery. evidence from an Italian administrative registry. Health Policy 124(12), 1345–1353 (2020)

    Google Scholar 

  7. Cerqueira, V., Torgo, L., Branco, P., Bellinger, C.: Automated imbalanced classification via layered learning. Mach. Learn. 1–22 (2022)

    Google Scholar 

  8. Curioso, I., Santos, R., Ribeiro, B., Carreiro, A., Coelho, P., Fragata, J., Gamboa, H.: Addressing the curse of missing data in clinical contexts: a novel approach to correlation-based imputation. J. King Saud Univ.-Comput. Inf. Sci. 35(6), 101562 (2023)

    Google Scholar 

  9. Efthymiou, C.A., O’regan, D.J.: Postdischarge complications: what exactly happens when the patient goes home? Interact. Cardiovasc. Thorac. Surg. 12(2), 130–134 (2011)

    Article  Google Scholar 

  10. Fan, Y., Dong, J., Wu, Y., Shen, M., Zhu, S., He, X., Jiang, S., Shao, J., Song, C.: Development of machine learning models for mortality risk prediction after cardiac surgery. Cardiovasc. Diagnos. Therapy 12(1), 12–23 (2022)

    Article  Google Scholar 

  11. Fränti, P., Sieranoja, S., Wikström, K., Laatikainen, T.: Clustering diagnoses from 58 million patient visits in Finland between 2015 and 2018. JMIR Med. Inform. 10(5), e35422 (2022)

    Article  Google Scholar 

  12. Fry, D.E., Pine, M.B., Nedza, S.M., Locke, B.D.G., Reband, B.A.M., Ba, Pine, G.: Inpatient and 90-day postdischarge outcomes in cardiac surgery. Am. J. Manag. Care 4 (2016)

    Google Scholar 

  13. Gordon, M.M., Moser, A.M., Rubin, E.: Unsupervised analysis of classical biomedical markers: robustness and medical relevance of patient clustering using bioinformatics tools. Plos One 7 (2012)

    Google Scholar 

  14. Head, S.J., Howell, N.J., Osnabrugge, R.L., Bridgewater, B., Keogh, B.E., Kinsman, R., Walton, P., Gummert, J.F., Pagano, D., Kappetein, A.P.: The European association for cardio-thoracic surgery (EACTS) database: an introduction. Eur. J. Cardiothorac. Surg. 44(3), e175–e180 (2013)

    Article  Google Scholar 

  15. Jawitz, O.K., Gulack, B.C., Brennan, J.M., Thibault, D.P., Wang, A., O’Brien, S.M., Schroder, J.N., Gaca, J.G., Smith, P.K.: Association of postoperative complications and outcomes following coronary artery bypass grafting. Am. Heart J. 222, 220–228 (2020)

    Article  Google Scholar 

  16. Kaushik, K., Kapoor, D., Varadharajan, V., Nallusamy, R.: Disease management: clustering-based disease prediction. Int. J. Collabor. Enter. 4(1–2), 69–82 (2014)

    Article  Google Scholar 

  17. Khoury, H., Ragalie, W.S., Sanaiha, Y., Boutros, H., Rudasill, S.E., Shemin, R.J., Benharash, P.: Readmission following surgical aortic valve replacement in the United States. Ann. Thorac. Surg. 110(3), 849–855 (2020)

    Article  Google Scholar 

  18. Kortlandt, F.A., van ’t Klooster, C.C., Bakker, A., Swaans, M.J., Kelder, J.C., de Kroon, T.L., Rensing, B.J., Eefting, F.D., van der Heyden, J.A., Post, M.C.: The predictive value of conventional surgical risk scores for periprocedural mortality in percutaneous mitral valve repair. Netherlands Heart J. 24, 475–480 (2016)

    Google Scholar 

  19. McInnes, L., Healy, J., Saul, N., Grossberger, L.: Umap: uniform manifold approximation and projection. J. Open Sour. Softw. 3(29), 861 (2018)

    Article  Google Scholar 

  20. Mortazavi, B., Desai, N.R., Zhang, J., Coppi, A., Warner, F., Krumholz, H.M., Negahban, S.N.: Prediction of adverse events in patients undergoing major cardiovascular procedures. IEEE J. Biomed. Health Inform. 21, 1719–1729 (2017)

    Article  Google Scholar 

  21. Nashef, S.A.M., Roques, F., Sharples, L.D., Nilsson, J., Smith, C., Goldstone, A.R., Lockowandt, U.: Euroscore II. Eur. J. Cardiothorac. Surg.: Official J. Eur. Assoc. Cardio-thorac. Surg. 41(4), 734–44 (2012)

    Google Scholar 

  22. Pudil, P., Novovicová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  23. Sanchez, C.E., Hermiller, J.B., Pinto, D.S., Chetcuti, S.J., Arshi, A., Forrest, J.K., Huang, J., Yakubov, S.J.: Predictors and risk calculator of early unplanned hospital readmission following contemporary self-expanding transcatheter aortic valve replacement from the STS/ACC TVT-registry. Cardiovasc. Revascularization Med.: Incl. Mol. Interv. 21(3), 263–270 (2020)

    Article  Google Scholar 

  24. Seese, L.M., Sultan, I.S., Gleason, T.G., Navid, F., Wang, Y., Thoma, F.W., Kilic, A.: The impact of major postoperative complications on long-term survival after cardiac surgery. Ann. Thorac. Surg. 110(1), 128–135 (2019)

    Article  Google Scholar 

  25. Shahian, D.M., Jacobs, J.P., Badhwar, V., Kurlansky, P.A., Furnary, A.P., Cleveland, J.C., Lobdell, K.W., Vassileva, C.M., von Ballmoos, M.C.W., Thourani, V.H., Rankin, J.S., Edgerton, J.R., D’Agostino, R.S., Desai, N.D., Feng, L., He, X., O’Brien, S.M.: The society of thoracic surgeons 2018 adult cardiac surgery risk models: Part 1-background, design considerations, and model development. Ann. Thorac. Surg. 105(5), 1411–1418 (2018)

    Article  Google Scholar 

  26. Silaschi, M., Conradi, L., Seiffert, M., Schnabel, R.B., Schön, G., Blankenberg, S., Reichenspurner, H.C., Diemert, P., Treede, H.: Predicting risk in transcatheter aortic valve implantation: comparative analysis of Euroscore II and established risk stratification tools. Thorac. Cardiovasc. Surg. 63, 472–478 (2014)

    Article  Google Scholar 

  27. Sinha, S., Dimagli, A., Dixon, L., Gaudino, M.F., Caputo, M., Vohra, H.A., Angelini, G.D., Benedetto, U.: Systematic review and meta-analysis of mortality risk prediction models in adult cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 33, 673–686 (2021)

    Article  Google Scholar 

  28. Wang, C., Jin, L., Qiao, F., Xue, Q., Zhang, X., Han, L.: Performance of the society of thoracic surgeons 2008 cardiac risk models for major postoperative complications after heart valve surgery in a Chinese population: a multicenter study. Heart Surg. Forum 21(4), E281–E285 (2018)

    Article  Google Scholar 

  29. Wang, T.K.M., Choi, D.H.M., Haydock, D.A., Gamble, G.D., Stewart, R.A., Ruygrok, P.N.: Comparison of risk scores for prediction of complications following aortic valve replacement. Heart Lung Circul. 24(6), 595–601 (2015)

    Article  Google Scholar 

  30. Zhong, Z., Yuan, X., Liu, S., Yang, Y., Liu, F.: Machine learning prediction models for prognosis of critically ill patients after open-heart surgery. Sci. Rep. 11 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was conducted under the project “CardioFollow.AI: An intelligent system to improve patients’ safety and remote surveillance in follow-up for cardiothoracic surgery”, supported by national funds through ‘FCT—Portuguese Foundation for Science and Technology, I.P.’, with the reference DSAIPA/AI/0094/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, B. et al. (2023). Unravelling Heterogeneity: A Hybrid Machine Learning Approach to Predict Post-discharge Complications in Cardiothoracic Surgery. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science(), vol 14116. Springer, Cham. https://doi.org/10.1007/978-3-031-49011-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49011-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49010-1

  • Online ISBN: 978-3-031-49011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics