Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Pendular Graph: Visualising Hierarchical Repetitive Structure in Point-Set Representations of the POP909 Music Dataset

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Abstract

Structure in music can mean many things: repetition, tonality, the existence of and focus on different “musical dimensions”, such as rhythm, timbre, etc. Here, we are concerned with repetitive structures in music, such as sections that repeat within a song (verses, choruses, etc.). We are also concerned mainly with hierarchical repetition (e.g., within a verse, there may be a phrase or riff that recurs multiple times). Existing annotated music datasets tend to be either small in terms of items in the corpus, but with detailed annotatations, or larger as a corpus, but with linear annotations only. In this paper, we 1) develop a method for taking a linear annotation as input, and converting it to a hierarchical annotation as output, where such hierarchies exist in the input, and 2) introduce a web-based interface (https://pendular-graph.glitch.me/) where hierarchical annotations of 909 songs can be explored and played back, in synchrony with a visual representation of note content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://musicintelligence.co/api/maia-spec/.

References

  1. Barlow, H., Morgenstern, S.: A Dictionary of Musical Themes. Crown Publishers (1948)

    Google Scholar 

  2. Benetos, E., Dixon, S., Duan, Z., Ewert, S.: Automatic music transcription: an overview. IEEE Signal Process. Mag. 36(1), 20–30 (2018)

    Article  Google Scholar 

  3. Bent, I.D., Pople, A.: Analysis. In: Sadie, S., Tyrrell, J. (eds.) The New Grove Dictionary of Music and Musicians, 2nd edn, vol. 1, pp. 526–589. Macmillan, London (2001)

    Google Scholar 

  4. Bruhn, S.: J.S. Bach’s Well-Tempered Clavier: In-depth Analysis and Interpretation, vol. 4. Siglind Bruhn (1993)

    Google Scholar 

  5. Chen, T.P., Su, L.: The musical schemagram: time-scale visualization of repeated patterns in music. In: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1642–1648. IEEE (2018)

    Google Scholar 

  6. Collins, T.: Discovery of repeated themes and sections (2013). https://www.music-ir.org/mirex/wiki/2013:Discovery_of_Repeated_Themes_%26_Sections

  7. Collins, T., Arzt, A., Flossmann, S., Widmer, G.: SIARCT-CFP: improving precision and the discovery of inexact musical patterns in point-set representations. In: Proceedings of the International Society for Music Information Retrieval Conference, Curitiba, pp. 549–554 (2013)

    Google Scholar 

  8. Collins, T., Coulon, C.: MAIA Util: an NPM package for bridging web audio with music-theoretic concepts. In: Proceedings of the Web Audio Conference, pp. 47–52 (2019)

    Google Scholar 

  9. Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. J. New Music Res. 24(1), 51–73 (1995)

    Article  Google Scholar 

  10. Crawford, T., Badkobeh, G., Lewis, D.: Searching page-images of early music scanned with OMR: a scalable solution using minimal absent words. In: Proceedings of the International Society for Music Information Retrieval Conference, Paris, pp. 233–239 (2018)

    Google Scholar 

  11. Dai, S., Yu, H., Dannenberg, R.B.: What is missing in deep music generation? a study of repetition and structure in popular music. In: Proceedings of the International Society for Music Information Retrieval Conference, Bengaluru, pp. 659–666 (2022)

    Google Scholar 

  12. Dai, S., Zhang, H., Dannenberg, R.B.: Automatic analysis and influence of hierarchical structure on melody, rhythm and harmony in popular music. In: Proceedings of the Joint Conference on AI Music Creativity (2020)

    Google Scholar 

  13. De Prisco, R., Malandrino, D., Pirozzi, D., Zaccagnino, G., Zaccagnino, R.: Understanding the structure of musical compositions: is visualization an effective approach? Inf. Vis. 16(2), 139–152 (2017)

    Article  Google Scholar 

  14. Deutsch, D.: The processing of structured and unstructured tonal sequences. Percept. Psychophys. 28(5), 381–389 (1980)

    Article  Google Scholar 

  15. Deutsch, D., Feroe, J.: The internal representation of pitch sequences in tonal music. Psychol. Rev. 88(6), 503 (1981)

    Article  Google Scholar 

  16. Endrjukaite, T., Kosugi, N.: Music visualization technique of repetitive structure representation to support intuitive estimation of music affinity and lightness. J. Mob. Multim. 8(1), 49–71 (2012)

    Google Scholar 

  17. Goto, M., Ogata, J., Yoshii, K., Fujihara, H., Mauch, M., Nakano, T.: PodCastle and Songle: crowdsourcing-based web services for spoken document retrieval and active music listening. In: Information Theory and Applications Workshop, pp. 298–299 (2012)

    Google Scholar 

  18. Hawthorne, C., Simon, I., Swavely, R., Manilow, E., Engel, J.: Sequence-to-sequence piano transcription with transformers. In: Proceedings of the International Society for Music Information Retrieval Conference, pp. 246–253 (2021)

    Google Scholar 

  19. Hayashi, A., Itoh, T., Matsubara, M.: Colorscore: visualization and condensation of structure of classical music. In: Knowledge Visualization Currents: From Text to Art to Culture, pp. 113–128 (2013)

    Google Scholar 

  20. Lamere, P.: The Infinite Jukebox (2012). https://eternalbox.dev/jukebox_index.html

  21. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)

    Google Scholar 

  22. Mann, Y.: Interactive music with Tone.js. In: Proceedings of the International Web Audio Conference (2015)

    Google Scholar 

  23. Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press (2008)

    Google Scholar 

  24. Nikrang, A., Collins, T., Widmer, G.: PatternViewer: an application for exploring repetitive and tonal structure. In: Late-Breaking News and Demos of the International Society for Music Information Retrieval Conference, Taipei (2014)

    Google Scholar 

  25. Schoenberg, A.: Fundamentals of Musical Composition. Faber and Faber (1967)

    Google Scholar 

  26. Schoenberg, A.: Style and Idea: Selected Writings. University of California Press (2010)

    Google Scholar 

  27. Tomašević, D., Wells, S., Ren, I.Y., Volk, A., Pesek, M.: Exploring annotations for musical pattern discovery gathered with digital annotation tools. J. Math. Music 15(2), 194–207 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Walshaw, C.: The ABC music standard 2.1 technical report (2011). https://abcnotation.com

  29. Wang, Z., et al.: POP909: a pop-song dataset for music arrangement generation. In: Proceedings of the International Society for Music Information Retrieval Conference, Montreal, pp. 38–45 (2020)

    Google Scholar 

  30. Wattenberg, M.: Shape of song (2002). http://www.turbulence.org/Works/song/

  31. Wattenberg, M.: Arc diagrams: visualizing structure in strings. In: IEEE Symposium on Information Visualization, pp. 110–116 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C., Collins, T. (2023). The Pendular Graph: Visualising Hierarchical Repetitive Structure in Point-Set Representations of the POP909 Music Dataset. In: Mori, H., Asahi, Y., Coman, A., Vasilache, S., Rauterberg, M. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14056. Springer, Cham. https://doi.org/10.1007/978-3-031-48044-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48044-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48043-0

  • Online ISBN: 978-3-031-48044-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics