Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vector Quantized Multi-modal Guidance for Alzheimer’s Disease Diagnosis Based on Feature Imputation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 1239 Accesses

Abstract

Magnetic Resonance Imaging (MRI) and positron emission tomography (PET) are the most used imaging modalities for Alzheimer’s disease (AD) diagnosis in clinics. Although PET can better capture AD-specific pathologies than MRI, it is less used compared with MRI due to high cost and radiation exposure. Imputing PET images from MRI is one way to bypass the issue of unavailable PET, but is challenging due to severe ill-posedness. Instead, we propose to directly impute classification-oriented PET features and combine them with real MRI to improve the overall performance of AD diagnosis. In order to more effectively impute PET features, we discretize the feature space by vector quantization and employ transformer to perform feature transition between MRI and PET. Our model is composed of three stages including codebook generation, mapping construction, and classifier enhancement based on combined features. We employ paired MRI-PET data during training to enhance the performance of MRI data during inference. Experimental results on ADNI dataset including 1346 subjects show a boost in classification performance of MRI without requiring PET. Our proposed method also outperforms other state-of-the-art data imputation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 15(3), 321–387 (2019)

    Article  Google Scholar 

  2. Aisen, P.S., et al.: On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer’s Res. Therapy 9, 1–10 (2017)

    Google Scholar 

  3. Marcus, C., Mena, E., Subramaniam, R.M.: Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med. 39(10), e413 (2014)

    Article  Google Scholar 

  4. Bloudek, L.M., Spackman, D.E., Blankenburg, M., Sullivan, S.D.: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J. Alzheimers Dis. 26(4), 627–645 (2011)

    Article  Google Scholar 

  5. Frisoni, G.B., et al.: Imaging markers for Alzheimer disease: which vs how. Neurology 81(5), 487–500 (2013)

    Article  Google Scholar 

  6. Narazani, M., Sarasua, I., Pölsterl, S., Lizarraga, A., Yakushev, I., Wachinger, C.: Is a PET all you need? a multi-modal study for Alzheimer’s disease using 3D CNNs. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 66–76. Springer (2022). https://doi.org/10.1007/978-3-031-16431-6_7

  7. Pan, X., et al.: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging. IEEE Trans. Med. Imaging 40(1), 81–92 (2020)

    Article  Google Scholar 

  8. Thung, K.H., Wee, C.Y., Yap, P.T., Shen, D., Initiative, A.D.N., et al.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91, 386–400 (2014)

    Article  Google Scholar 

  9. Ning, Z., Xiao, Q., Feng, Q., Chen, W., Zhang, Y.: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 40(6), 1632–1645 (2021)

    Article  Google Scholar 

  10. Kazeminia, S., et al.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)

    Article  Google Scholar 

  11. Lin, W., et al.: Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front. Neurosci. 15, 646013 (2021)

    Article  Google Scholar 

  12. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s Disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  13. Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D.: Disease-image specific generative adversarial network for brain disease diagnosis with incomplete multi-modal neuroimages. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_16

    Chapter  Google Scholar 

  14. Pan, Y., Liu, M., Xia, Y., Shen, D.: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data. IEEE TPAMI 44(10), 6839–6853 (2021)

    Article  Google Scholar 

  15. Mallya, M., Hamarneh, G.: Deep multimodal guidance for medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 298–308. Springer (2022). https://doi.org/10.1007/978-3-031-16449-1_29

  16. Shen, Z., et al.: Collaborative quantization embeddings for intra-subject prostate mr image registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 237–247. Springer (2022). https://doi.org/10.1007/978-3-031-16446-0_23

  17. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  18. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  19. Santhirasekaram, A., Kori, A., Winkler, M., Rockall, A., Glocker, B.: Vector quantisation for robust segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 663–672. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_63

  20. Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  21. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  22. Kurth, F., Gaser, C., Luders, E.: A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat. Protoc. 10(2), 293–304 (2015)

    Article  Google Scholar 

  23. He, S., Feng, Y., Grant, P.E., Ou, Y.: Deep relation learning for regression and its application to brain age estimation. IEEE Trans. Med. Imaging 41(9), 2304–2317 (2022)

    Article  Google Scholar 

  24. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  25. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12873–12883 (2021)

    Google Scholar 

  26. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Sun, K., Liu, Y., Ou, Z., Shen, D. (2024). Vector Quantized Multi-modal Guidance for Alzheimer’s Disease Diagnosis Based on Feature Imputation. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics