Abstract
The employment setting for autistic individuals in the USA is grim. Based on reports, individuals with ASD struggle to secure and retain employment due to challenges in communicating and collaborating with others in workplace settings which is often attributed to their social skills deficit. Current programs that support collaborative skills development in vocational settings rely on manual evaluation and feedback by human observers, which can be resource straining and receptive to bias. Using a collaborative virtual environment (CVE) allows neurodiverse individuals to develop teamwork skills by working together with a neurotypical partner in a shared virtual space. An effective CVE system can provide real-time prompts by recognizing the user’s behavior to promote teamwork. As such, it is crucial to be able to automatically label both users’ behaviors. In this paper, we propose using K-means clustering to automate behavior labeling in a workplace CVE. The results show that K-means clustering enables high accuracy in predicting the user’s behavior, therefore, confirming that it can be used in future studies to support real-time prompts to encourage teamwork in a CVE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
We are using both identity-first and people-first language to respect both views by interchangeably using the term ‘autistic individuals and ‘individuals with ASD’. [32].
References
Neurodiversity hiring: Global diversity and inclusion at microsoft. https://www.crosoft.com/en-us/diversity/inside-microsoft/cross-disability/neurodiversityhiring
Specialsterne: Assessment. https://www.specialisterneni.com/about-us/assessment/
Unity website. https://unity3d.com/unity
Afsar, P., Cortez, P., Santos, H.: Automatic visual detection of human behavior: a review from 2000 to 2014. Expert Syst. Appl. 42(20), 6935–6956 (2015). https://doi.org/10.1016/j.eswa.2015.05.023. https://www.sciencedirect.com/science/article/pii/S0957417415003516
Agran, M., Hughes, C., Thoma, C., Scott, L.: Employment social skills: What skills are really valued? Career Develop. Trans. Except. Individ. 39, 111–120 (2014). https://doi.org/10.1177/2165143414546741
Almaguer, E., Yasmin, S.: A haptic virtual kitchen for the cognitive empowerment of children with autism spectrum disorder. In: Stephanidis, C., Antona, M. (eds.) HCII 2019. CCIS, vol. 1088, pp. 137–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30712-7_18
Amat, A., et al.: Collaborative virtual environment to encourage teamwork in autistic adults in workplace settings, pp. 339–348 (2021). https://doi.org/10.1007/978-3-030-78092-0_22
Apostolellis, P., Bowman, D.: C-olive: Group co-located interaction in VEs for contextual learning, pp. 129–130 (2014). https://doi.org/10.1109/VR.2014.6802085
Ashton, M.C., Lee, K.: The HEXACO-60: a short measure of the major dimensions of personality. J. Pers. Assess. 91(4), 340–345 (2009). https://doi.org/10.1080/00223890902935878
Basden, B., Basden, D., Bryner, S., Thomas, R.r.: Developing methods for understanding social behavior in a 3D virtual learning environment. J. Exp. Psychol. Learn Mem. Cogn. 23(5), 1176–91 (1997). https://doi.org/10.1037//0278-7393.23.5.1176
Bekele, E., Zheng, Z., Swanson, A.R., Crittendon, J.A., Warren, Z., Sarkar, N.: Understanding how adolescents with autism respond to facial expressions in virtual reality environments. IEEE Trans. Visual Comput. Graphics 19, 711–720 (2013)
Bernard-Opitz, Vand Ross, K., Tuttas, M.: Computer assisted instruction for autistic children. Ann. Acad. Med. Singap. 19(5), 611–616 (1990)
Bernard-Opitz, V., Sriram, N., Nakhoda, S.: Enhancing social problem solving in children with autism and normal children through computer-assisted instruction. J. Autism Develop. Disord. 31, 377–84 (2001). https://doi.org/10.1023/A:1010660502130
Bian, D., et al.: A novel virtual reality driving environment for autism intervention, pp. 474–483 (2013). https://doi.org/10.1007/978-3-642-39191-0_52
Bird, G., Cook, R.: Mixed emotions: the contribution of alexithymia to the emotional symptoms of autism. Transl. Psych. 3, e285 (2013). https://doi.org/10.1038/tp.2013.61
Breland, J., Shiratuddin, M.F.: A study on collaborative design in a virtual environment. Int. J. Learn. 16, 385–398 (2009). https://doi.org/10.18848/1447-9494/CGP/v16i03/46179
Checa, D., Bustillo, A.: A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools Appl. 79(9), 5501–5527 (2019). https://doi.org/10.1007/s11042-019-08348-9
Chen, W.: Multitouch tabletop technology for people with autism spectrum disorder: a review of the literature. Procedia Comput. Sci. 14, 198–207 (2012). https://doi.org/10.1016/j.procs.2012.10.023
Constantino, J., Gruber, C.: Social responsiveness scale (srs). Western Psychological Services Los Angeles (2005)
Creed, P., Macintyre, S.: The relative effects of deprivation of the latent and manifest benefits of employment on the well-being of unemployed people. J. Occup. Health Psychol. 6, 324–31 (2001). https://doi.org/10.1037/1076-8998.6.4.324
Deiglmayr, A., Spada, H., Rummel, N.: A rating scheme for assessing the quality of computer-supported collaboration processes. Int. J. Comput.-Support. Collaborative Learn. 2(1), 63–86 (2007). https://doi.org/10.1007/s11412-006-9005-x
Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of human actions in video, pp. 1491–1498 (2009). https://doi.org/10.1109/ICCV.2009.5459279
D’Mello, S., Olney, A., Person, N.: Mining collaborative patterns in tutorial dialogues. J. Educ. Data Min. 2, 1–37 (2010)
Echeverria, V., Martinez-Maldonado, R., Buckingham Shum, S.: Towards collaboration translucence: giving meaning to multimodal group data (2019). https://doi.org/10.1145/3290605.3300269
Fredriksson, T., Issa Mattos, D., Bosch, J., Olsson, H.: Data Labeling: an Empirical Investigation into Industrial Challenges and Mitigation Strategies, pp. 202–216 (2020). https://doi.org/10.1007/978-3-030-64148-1_13
Hanmin, Y., Hao, L., Qianting, S.: An improved semi-supervised k-means clustering algorithm, pp. 41–44 (2016). https://doi.org/10.1109/ITNEC.2016.7560315
Hayashi, Y.: Detecting collaborative learning through emotions: an investigation using facial expression recognition, pp. 89–98 (2019). https://doi.org/10.1007/978-3-030-22244-4_12
Hendricks, D.: A short review on the current understanding of autism spectrum disorders. J. Vocat. Rehabil. 32(2), 125–134 (2010)
Hoffman, G., Breazeal, C.: Collaboration in human-robot teams. Collection of Technical Papers - AIAA 1st Intelligent Systems Technical Conference 2 (09 2004). https://doi.org/10.2514/6.2004-6434
Hong, J.H., Ramos Rojas, J., Dey, A.: Toward personalized activity recognition systems with a semipopulation approach. IEEE Transactions on Human-Machine Systems, pp. 1–12 (2015). https://doi.org/10.1109/THMS.2015.2489688
Inc., T.M.: Matlab (2018)
Kenny, L., Hattersley, C., Molins, B., Buckley, C., Povey, C., Pellicano, E.: Which terms should be used to describe autism? perspectives from the UK autism community. Autism 20(4), 442–62 (2016). https://doi.org/10.1177/1362361315588200
Kulman, R., Slobuski, T., Seitsinger, R.: Teaching 21st Century, Executive-Functioning, and Creativity Skills with Popular Video Games and Apps, pp. 159–174. ETC Press, Pittsburgh, PA, USA (2014). https://doi.org/10.5555/2811147.2811157
Kusumaningrum, R., Farikhin, F.: An automatic labeling of K-means clusters based on chi-square value. J. Phys. Conf. Ser. 801, 012071 (2017). https://doi.org/10.1088/1742-6596/801/1/012071
Litchfield, P., Cooper, C., Hancock, C., Watt, P.: Work and wellbeing in the 21st century \(\dagger \). Int. J. Environ. Res. Public Health 13, 1065 (2016). https://doi.org/10.3390/ijerph13111065
Lord, C., et al.: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Develop. Disorders 30, 205–223 (2000). https://doi.org/10.1023/A:1005592401947
M. Khawam, A., DiDona, T., S. Hern, B.: Effectiveness of teamwork in the workplace. Int. J. Sci. Basic Appl. Res. (IJSBAR) 32(3), 267–286 (2017). https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/7134
Martinez-Maldonado, R., Gasevic, D., Echeverria, V., Nieto, G., Swiecki, Z., Buckingham Shum, S.: What do you mean by collaboration analytics? a conceptual model. J. Learn. Analyt. 8, 126–153 (2021). https://doi.org/10.18608/jla.2021.7227
Mihoub, A., Lefebvre, G.: Wearables and social signal processing for smarter public presentations. ACM Trans. Interact. Intell. Syst. 9, 9 (2018). https://doi.org/10.1145/3234507
Müller, P., et al.: Multimediate: multi-modal group behaviour analysis for artificial mediation, pp. 4878–4882 (2021). https://doi.org/10.1145/3474085.3479219
Norris, M.W., Spicer, K., Byrd, T.: Virtual reality: the new pathway for effective safety training. Professional Saf. 64(06), 36–39 (2019)
Okada, S., et al.: Estimating communication skills using dialogue acts and nonverbal features in multiple discussion datasets, pp. 169–176 (2016). https://doi.org/10.1145/2993148.2993154
Palliya Guruge, C., Oviatt, S., Haghighi, P., Pritchard, E.: Advances in multimodal behavioral analytics for early dementia diagnosis: a review, pp. 328–340 (2021). https://doi.org/10.1145/3462244.3479933
Park, H.R., et al.: A short review on the current understanding of autism spectrum disorders. Exper. Neurobiol. 25, 1 (2016). https://doi.org/10.5607/en.2016.25.1.1
Parsons, S., Mitchell, P.: The potential of virtual reality in social skills training for people with autistic spectrum disorders. J. Intell. Disability Res. JIDR 46, 430–443 (2002). https://doi.org/10.1046/j.1365-2788.2002.00425.x
Putnam, C., Chong, L.: Software and technologies designed for people with autism: what do users want? abstract, pp. 3–10 (2008). https://doi.org/10.1145/1414471.1414475
Saiano, M., et al.: Natural interfaces and virtual environments for the acquisition of street crossing and path following skills in adults with autism spectrum disorders: a feasibility study. J. Neuroeng. Rehabil. 12, 17 (2015). https://doi.org/10.1186/s12984-015-0010-z
Salah, A., Gevers, T., Sebe, N., Vinciarelli, A.: Challenges of human behavior understanding, vol. 6219, pp. 1–12 (2010). https://doi.org/10.1007/978-3-642-14715-9_1
Salah, A., Pantic, M., Vinciarelli, A.: Recent developments in social signal processing, pp. 380–385 (2011). https://doi.org/10.1109/ICSMC.2011.6083695
Sanyal, S., Hisam, M.: The impact of teamwork on work performance of employees: a study of faculty members in Dhofar university 20 (2018). https://doi.org/10.9790/487X-2003011522
Schmidt, M., Laffey, J., Schmidt, C., Wang, X., Stichter, J.: Developing methods for understanding social behavior in a 3D virtual learning environment. Comput. Human Behav. 28, 405–413 (2012). https://doi.org/10.1016/j.chb.2011.10.011
Scott, M., Falkmer, M., Girlder, S., Falkmer, T.: Viewpoints on factors for successful employment for adults with autism spectrum disorder. PLoS One 6, 0139281 (2015). https://doi.org/10.1371/journal.pone.0139281
Stauch, T.A., Plavnick, J.B.: Teaching vocational and social skills to adolescents with Autism using video modeling. Educ. Treat. Child. 43(2), 137–151 (2020). https://doi.org/10.1007/s43494-020-00020-4
Sung, C., Connor, A., Chen, J., Lin, C.C., Kuo, H.J., Chun, J.: Development, feasibility, and preliminary efficacy of an employment-related social skills intervention for young adults with high-functioning autism. Autism 23, 136236131880134 (2018). https://doi.org/10.1177/1362361318801345
Taylor, J., Seltzer, M.: Employment and post-secondary educational activities for young adults with autism spectrum disorders during the transition to adulthood. J. Autism Dev. Disord. 41(5), 566–74 (2011). https://doi.org/10.1007/s10803-010-1070-3
Vajda, S., Rangoni, Y., Cecotti, H.: Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: application to handwritten character recognition. Pattern Recogn. Lett. 58, 23–28 (2015). https://doi.org/10.1016/j.patrec.2015.02.001. https://www.sciencedirect.com/science/article/pii/S0167865515000380
Valencia, K., Rusu, C., Quiñones, D., Jamet, E.: The impact of technology on people with autism spectrum disorder: systematic literature review. Sensors 19(20) (2019). https://doi.org/10.3390/s19204485
Walsh, E., Holloway, J., Lydon, H.: An evaluation of a social skills intervention for adults with autism spectrum disorder and intellectual disabilities preparing for employment in ireland: a pilot study. J. Autism Dev. Disord. 48(5), 1727–1741 (2017). https://doi.org/10.1007/s10803-017-3441-5
Williams, C., Wright, B., Callaghan, G., Coughlan, B.: Do children with autism learn to read more readily by computer assisted instruction or traditional book methods?: A pilot study. Autism : Int. Jo. Res. Pract. 6, 71–91 (2002). https://doi.org/10.1177/1362361302006001006
Zhang, L., Warren, Z., Swanson, A., Weitlauf, A., Sarkar, N.: Understanding performance and verbal-communication of children with ASD in a collaborative virtual environment. J. Autism Dev. Disord. 48(8), 2779–2789 (2018). https://doi.org/10.1007/s10803-018-3544-7
Zhao, Z., Chen, Y., Liu, J., Shen, Z., Liu, M.: Cross-people mobile-phone based activity recognition, pp. 2545–2550 (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-423
Zheng, Z., et al.: Impact of robot-mediated interaction system on joint attention skills for children with autism. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–8 (2013)
Acknowledgments
We are grateful for the support provided by NSF grants 1936970 and 2033413 as well as NSF NRT grant DGE 19-22697 for this research. We would also like to thank the Vanderbilt Treatment and Research Institute for Autism Spectrum Disorders (TRIAD) team; Amy Weitlauf and Amy Swanson for their expert advice on interventions for autistic individuals and recruitments for the study. The authors are solely responsible for the contents and opinions expressed in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Plunk, A., Amat, A.Z., Wilkes, D.M., Sarkar, N. (2023). Automated Behavior Labeling During Team-Based Activities Involving Neurodiverse and Neurotypical Partners Using Multimodal Data. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-37660-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37659-7
Online ISBN: 978-3-031-37660-3
eBook Packages: Computer ScienceComputer Science (R0)