Abstract
The biomedical knowledge about transcriptional regulation in bacteria is rapidly published in scientific articles, so keeping biological databases up to date by manual curation is rather than impossible. Despite the efforts in biomedical text mining, there are still challenges in extracting regulatory interactions (RIs) between transcription factors and genes from text documents. One of them is produced by text extraction from PDF files. We have observed that the extraction of RIs from text lines that comes from tables of the original PDF article produces false positives. Here, we address the problem of automatically separating this text lines from those that are regular sentences by using automatic classification. Our best model was a Support Vector Classifier trained with n-grams of characters of tags of parts of speech, numbers, symbols, punctuation, brackets, and hyphens. Despite a significant imbalanced data, our classifier archived a positive class F1-score of 0.87. Our best classifier will be coupled eventually to a preprocessing pipeline for the automatic generation of transcriptional regulatory networks of bacteria by discarding text lines that comes from tables of the original PDF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)
Angeli, G., Johnson Premkumar, M.J., Manning, C.D.: Leveraging linguistic structure for open domain information extraction. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 344–354. Association for Computational Linguistics, Beijing (2015). https://doi.org/10.3115/v1/P15-1034
Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3(10), 27–39 (2013)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)
Bishop, C.M.: Pattern Recognition and Machine Learning, p. 738. Springer, NY (2006)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020). https://doi.org/10.1186/s12864-019-6413-7
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
Díaz-Rodríguez, M., et al.: Lisen &Curate: a platform to facilitate gathering textual evidence for curation of regulation of transcription initiation in bacteria. Biochim. Biophys. Acta, Gene Regul. Mech. 1864(11), 194753 (2021). https://doi.org/10.1016/j.bbagrm.2021.194753
Escorcia-Rodríguez, J.M., Tauch, A., Freyre-González, J.A.: Abasy Atlas v2.2: the most comprehensive and up-to-date inventory of meta-curated, historical, bacterial regulatory networks, their completeness and system-level characterization. Comput. Struct. Biotechnol. J. 18, 1228–1237 (2020). https://doi.org/10.1016/j.csbj.2020.05.015
Fàbrega, A., Vila, J.: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26(2), 308–341 (2013)
Feng, X., Oropeza, R., Kenney, L.J.: Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol. Microbiol. 48(4), 1131–1143 (2003). https://doi.org/10.1046/j.1365-2958.2003.03502.x
Ferrario, A., Nagelin, M.: The art of natural language processing: classical, modern and contemporary approaches to text document classification. Modern and Contemporary Approaches to Text Document Classification (March 1, 2020) (2020)
Jeni, L., Cohn, J., De la Torre, F.: Facing imbalanced data – recommendations for the use of performance metrics. In: Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013, vol. 2013, pp. 245–251 (2013). https://doi.org/10.1109/ACII.2013.47
Kadhim, A.I.: Survey on supervised machine learning techniques for automatic text classification. Artif. Intell. Rev. 52(1), 273–292 (2019). https://doi.org/10.1007/s10462-018-09677-1
Konheim, A.G.: Cryptography, a Primer. Wiley, Chichester (1981)
Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: Icml, vol. 97, p. 179. Citeseer (1997)
Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017)
Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 91–100 (2007)
Lusa, L., et al.: Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models. BMC Bioinform. 16(1), 1–10 (2015)
Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn treebank. Comput. Linguist. 19(2), 313–330 (1993)
Moschitti, A., Basili, R.: Complex linguistic features for text classification: a comprehensive study. In: McDonald, S., Tait, J. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24752-4_14
Park, S.Y., Pontes, M.H., Groisman, E.A.: Flagella-independent surface motility in Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. 112(6), 1850–1855 (2015). https://doi.org/10.1073/pnas.1422938112
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011)
Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random fields. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 235–242 (2003)
Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural language processing toolkit for many human languages. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (2020)
RegulonDB: Regulatory network interactions (2022). http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp. Accessed 19 June 2022
Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28(1), 11–21 (1972)
Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.: Scikit-learn: machine learning without learning the machinery. GetMobile: Mob. Comput. Commun. 19(1), 29–33 (2015). https://doi.org/10.1145/2786984.2786995
Wang, L., et al.: InvS coordinates expression of PrgH and FimZ and is required for invasion of epithelial cells by Salmonella enterica serovar Typhimurium. J. Bacteriol. 199(13), e00824-16 (2017). https://doi.org/10.1128/JB.00824-16
Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods for Analyzing Unstructured Information. Springer, NY (2010). https://doi.org/10.1007/978-0-387-34555-0
Yoon, H., Lim, S., Heu, S., Choi, S., Ryu, S.: Proteome analysis of Salmonella enterica serovar Typhimurium fis mutant. FEMS Microbiol. Lett. 226(2), 391–396 (2003)
Zhai, Z., et al.: ChemTables: a dataset for semantic classification on tables in chemical patents. J. Cheminformatics 13(1), 97 (2021)
Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation: a survey. ACM Trans. Intell. Syst. Technol. 11(2), 1–35 (2020). https://doi.org/10.1145/3372117
Acknowledgments
This work was supported by UNAM-PAPIIT IA203420 and the Universidad Nacional Autónoma de México (UNAM). We acknowledge Víctor del Moral Chávez and Alfredo José Hernández Álvarez for computational support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sepúlveda, D., Rodríguez-Herrera, J., Varela-Vega, A., Zagal Norman, A., Méndez-Cruz, CF. (2022). Sentence Classification to Detect Tables for Helping Extraction of Regulatory Interactions in Bacteria. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-20837-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20836-2
Online ISBN: 978-3-031-20837-9
eBook Packages: Computer ScienceComputer Science (R0)