Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sentence Classification to Detect Tables for Helping Extraction of Regulatory Interactions in Bacteria

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021)

Abstract

The biomedical knowledge about transcriptional regulation in bacteria is rapidly published in scientific articles, so keeping biological databases up to date by manual curation is rather than impossible. Despite the efforts in biomedical text mining, there are still challenges in extracting regulatory interactions (RIs) between transcription factors and genes from text documents. One of them is produced by text extraction from PDF files. We have observed that the extraction of RIs from text lines that comes from tables of the original PDF article produces false positives. Here, we address the problem of automatically separating this text lines from those that are regular sentences by using automatic classification. Our best model was a Support Vector Classifier trained with n-grams of characters of tags of parts of speech, numbers, symbols, punctuation, brackets, and hyphens. Despite a significant imbalanced data, our classifier archived a positive class F1-score of 0.87. Our best classifier will be coupled eventually to a preprocessing pipeline for the automatic generation of transcriptional regulatory networks of bacteria by discarding text lines that comes from tables of the original PDF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)

    Google Scholar 

  2. Angeli, G., Johnson Premkumar, M.J., Manning, C.D.: Leveraging linguistic structure for open domain information extraction. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 344–354. Association for Computational Linguistics, Beijing (2015). https://doi.org/10.3115/v1/P15-1034

  3. Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3(10), 27–39 (2013)

    Google Scholar 

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning, p. 738. Springer, NY (2006)

    Google Scholar 

  6. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  8. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020). https://doi.org/10.1186/s12864-019-6413-7

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  10. Díaz-Rodríguez, M., et al.: Lisen &Curate: a platform to facilitate gathering textual evidence for curation of regulation of transcription initiation in bacteria. Biochim. Biophys. Acta, Gene Regul. Mech. 1864(11), 194753 (2021). https://doi.org/10.1016/j.bbagrm.2021.194753

    Article  CAS  PubMed  Google Scholar 

  11. Escorcia-Rodríguez, J.M., Tauch, A., Freyre-González, J.A.: Abasy Atlas v2.2: the most comprehensive and up-to-date inventory of meta-curated, historical, bacterial regulatory networks, their completeness and system-level characterization. Comput. Struct. Biotechnol. J. 18, 1228–1237 (2020). https://doi.org/10.1016/j.csbj.2020.05.015

  12. Fàbrega, A., Vila, J.: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26(2), 308–341 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Feng, X., Oropeza, R., Kenney, L.J.: Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol. Microbiol. 48(4), 1131–1143 (2003). https://doi.org/10.1046/j.1365-2958.2003.03502.x

    Article  CAS  PubMed  Google Scholar 

  14. Ferrario, A., Nagelin, M.: The art of natural language processing: classical, modern and contemporary approaches to text document classification. Modern and Contemporary Approaches to Text Document Classification (March 1, 2020) (2020)

    Google Scholar 

  15. Jeni, L., Cohn, J., De la Torre, F.: Facing imbalanced data – recommendations for the use of performance metrics. In: Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013, vol. 2013, pp. 245–251 (2013). https://doi.org/10.1109/ACII.2013.47

  16. Kadhim, A.I.: Survey on supervised machine learning techniques for automatic text classification. Artif. Intell. Rev. 52(1), 273–292 (2019). https://doi.org/10.1007/s10462-018-09677-1

    Article  Google Scholar 

  17. Konheim, A.G.: Cryptography, a Primer. Wiley, Chichester (1981)

    Google Scholar 

  18. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: Icml, vol. 97, p. 179. Citeseer (1997)

    Google Scholar 

  19. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017)

    Google Scholar 

  20. Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 91–100 (2007)

    Google Scholar 

  21. Lusa, L., et al.: Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models. BMC Bioinform. 16(1), 1–10 (2015)

    Google Scholar 

  22. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

    Google Scholar 

  23. Moschitti, A., Basili, R.: Complex linguistic features for text classification: a comprehensive study. In: McDonald, S., Tait, J. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24752-4_14

    Chapter  Google Scholar 

  24. Park, S.Y., Pontes, M.H., Groisman, E.A.: Flagella-independent surface motility in Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. 112(6), 1850–1855 (2015). https://doi.org/10.1073/pnas.1422938112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011)

    Google Scholar 

  26. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random fields. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 235–242 (2003)

    Google Scholar 

  27. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural language processing toolkit for many human languages. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (2020)

    Google Scholar 

  28. RegulonDB: Regulatory network interactions (2022). http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp. Accessed 19 June 2022

  29. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28(1), 11–21 (1972)

    Article  Google Scholar 

  30. Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.: Scikit-learn: machine learning without learning the machinery. GetMobile: Mob. Comput. Commun. 19(1), 29–33 (2015). https://doi.org/10.1145/2786984.2786995

    Article  Google Scholar 

  31. Wang, L., et al.: InvS coordinates expression of PrgH and FimZ and is required for invasion of epithelial cells by Salmonella enterica serovar Typhimurium. J. Bacteriol. 199(13), e00824-16 (2017). https://doi.org/10.1128/JB.00824-16

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods for Analyzing Unstructured Information. Springer, NY (2010). https://doi.org/10.1007/978-0-387-34555-0

  33. Yoon, H., Lim, S., Heu, S., Choi, S., Ryu, S.: Proteome analysis of Salmonella enterica serovar Typhimurium fis mutant. FEMS Microbiol. Lett. 226(2), 391–396 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Zhai, Z., et al.: ChemTables: a dataset for semantic classification on tables in chemical patents. J. Cheminformatics 13(1), 97 (2021)

    Article  Google Scholar 

  35. Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation: a survey. ACM Trans. Intell. Syst. Technol. 11(2), 1–35 (2020). https://doi.org/10.1145/3372117

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by UNAM-PAPIIT IA203420 and the Universidad Nacional Autónoma de México (UNAM). We acknowledge Víctor del Moral Chávez and Alfredo José Hernández Álvarez for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Francisco Méndez-Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sepúlveda, D., Rodríguez-Herrera, J., Varela-Vega, A., Zagal Norman, A., Méndez-Cruz, CF. (2022). Sentence Classification to Detect Tables for Helping Extraction of Regulatory Interactions in Bacteria. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20837-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20836-2

  • Online ISBN: 978-3-031-20837-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics