Abstract
A system that is able to automatically transpose an audio recording would have many potential applications, from music production to hearing aid design. We present a deep learning approach to transpose an audio recording directly from the raw time domain signal. We train recurrent neural networks with raw audio samples of simple waveforms (sine, square, triangle, sawtooth) covering the linear range of possible frequencies. We examine our generated transpositions for each musical semitone step size up to the octave and compare our results against two popular pitch shifting algorithms. Although our approach is able to accurately transpose the frequencies in a signal, these signals suffer from a significant amount of added noise. This work represents exploratory steps towards the development of a general deep transposition model able to quickly transpose to any desired spectral mapping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 34(5), 1–41 (2007). https://doi.org/10.7551/mitpress/7496.003.0016
Briot, J.-P., Pachet, F.: Deep learning for music generation: challenges and directions. Neural Comput. Appl. 32(4), 981–993 (2018). https://doi.org/10.1007/s00521-018-3813-6
Choi, K., Fazekas, G., Cho, K., Sandler, M.: A tutorial on deep learning for music information retrieval. arXiv preprint arXiv:1709.04396 (2017). https://doi.org/10.48550/arXiv.1709.04396
Disch, S., Edler, B.: Frequency selective pitch transposition of audio signals. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 29–32. IEEE (2011). https://doi.org/10.1109/ICASSP.2011.5946320
Dolson, M.: The phase vocoder: a tutorial. Comput. Music. J. 10(4), 14–27 (1986). https://doi.org/10.2307/3680093
Engel, J., Hantrakul, L.H., Gu, C., Roberts, A.: DDSP: differentiable digital signal processing. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=B1x1ma4tDr
Engel, J., et al.: Neural audio synthesis of musical notes with wavenet autoencoders. In: International Conference on Machine Learning, pp. 1068–1077. PMLR (2017). https://doi.org/10.48550/arXiv.1704.01279
Hernandez-Olivan, C., Beltran, J.R.: Music composition with deep learning: a review. arXiv preprint arXiv:2108.12290 (2021). https://doi.org/10.48550/arXiv:2108.12290
Jawahir, A., Haviluddin, H.: An audio encryption using transposition method. Int. J. Adv. Intell. Inform. 1(2), 98–106 (2015). https://doi.org/10.26555/ijain.v1i2.24
Khalil, R.A., Jones, E., Babar, M.I., Jan, T., Zafar, M.H., Alhussain, T.: Speech emotion recognition using deep learning techniques: a review. IEEE Access 7, 117327–117345 (2019). https://doi.org/10.3390/app9194050
Lawlor, B., Fagan, A.D.: A novel efficient algorithm for music transposition. Organ. Sound 4(3), 161–167 (2000). https://doi.org/10.1017/S135577180000306X
Lin, S., Liu, N., Nazemi, M., Li, H., Ding, C., Wang, Y., Pedram, M.: FFT-based deep learning deployment in embedded systems. In: 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1045–1050. IEEE (2018). https://doi.org/10.23919/DATE.2018.8342166
Luo, Y.J., Chen, M.T., Chi, T.S., Su, L.: Singing voice correction using canonical time warping. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 156–160. IEEE (2018). https://doi.org/10.1109/ICASSP.2018.8461280
Luo, Y.J., Lin, Y.J., Su, L.: Toward expressive singing voice correction: On perceptual validity of evaluation metrics for vocal melody extraction. arXiv preprint arXiv:2010.12196 (2020). https://doi.org/10.48550/arXiv.2010.12196
Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through FFTs. arXiv preprint arXiv:1312.5851 (2013). https://doi.org/10.48550/arXiv.1312.5851
Moulines, E., Charpentier, F.: Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun. 9(5–6), 453–467 (1990). https://doi.org/10.1016/0167-6393(90)90021-Z
Nye, M., Saxe, A.: Are efficient deep representations learnable? arXiv preprint arXiv:1807.06399 (2018). https://doi.org/10.48550/arXiv.1807.06399
van den Oord, A., et al.: Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016). https://doi.org/10.48550/arXiv.1609.03499
Peeters, G., Richard, G.: Deep learning for audio and music. In: Benois-Pineau, J., Zemmari, A. (eds.) Multi-faceted Deep Learning, pp. 231–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74478-6_10
Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Sel. Top. Sig. Process. 13(2), 206–219 (2019). https://doi.org/10.1109/JSTSP.2019.2908700
Rosenzweig, S., Schwär, S., Driedger, J., Müller, M.: Adaptive pitch-shifting with applications to intonation adjustment in a cappella recordings. In: 2021 24th International Conference on Digital Audio Effects (DAFx), pp. 121–128. IEEE (2021). https://doi.org/10.23919/DAFx51585.2021.9768268
Roucos, S., Wilgus, A.: High quality time-scale modification for speech. In: ICASSP’85. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, pp. 493–496. IEEE (1985). https://doi.org/10.1109/ICASSP.1985.1168381
Schedl, M.: Deep learning in music recommendation systems. Front. Appl. Math. Stat. 44 (2019). https://doi.org/10.3389/fams.2019.00044
Verhelst, W., Roelands, M.: An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 554–557. IEEE (1993). https://doi.org/10.1109/ICASSP.1993.319366
Wager, S., Tzanetakis, G., Wang, C.i., Kim, M.: Deep autotuner: a pitch correcting network for singing performances. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 246–250. IEEE (2020). https://doi.org/10.1109/ICASSP40776.2020.9054308
Zhou, F., Torre, F.d.l.: Canonical time warping for alignment of human behavior. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems. NIPS 2009, pp. 2286–2294. Curran Associates Inc., Red Hook (2009). https://doi.org/10.5555/2984093.2984349
Zou, F., Shen, L., Jie, Z., Zhang, W., Liu, W.: A sufficient condition for convergences of Adam and RMSPROP. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11127–11135 (2019). https://doi.org/10.48550/arXiv.1811.09358
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Donnelly, P.J., Carlson, P. (2023). Transposition of Simple Waveforms from Raw Audio with Deep Learning. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-29956-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29955-1
Online ISBN: 978-3-031-29956-8
eBook Packages: Computer ScienceComputer Science (R0)