Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Review on Deep Learning on UAV Monitoring Systems for Agricultural Applications

  • Chapter
  • First Online:
Artificial Intelligence for Robotics and Autonomous Systems Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1093))

Abstract

In this chapter we present literature review on UAV monitoring systems that utilized deep learning algorithms to ensure improvement on plant and animal production yields. This work is important because of the growing world population and thus increased demand for food production, that threaten food security and national economy. Hence the need to ensure sustainable food production that is made more complicated with the advent of global warming, occupational preference for food consumption and not food production, diminishing land and water resources. We choose to consider studies that utilize the UAV platform to collect images compared to satellite because UAVs are easily available, cheaper to maintain, and the collected images can be updated at any time. Previous studies with research foci on plant and animal monitoring are evaluated in terms of their advantages and disadvantages. We looked into different deep learning models and compared their model performances in using various types of drones and different environmental conditions during data gathering. Topics on plant monitoring include pest infiltration, plant growth, fruit conditions, weed invasion, etc. While topics on animal monitoring include animal identification and animal population count. The monitoring systems used in previous studies utilize computer vision that include processes such as image classification, object detection, and segmentation. It aids in increasing efficiency, high accuracy, automatic, and intelligent system for a particular task. The recent advancements in deep learning models and off-the-shelf drones open more opportunities with lesser costs and faster operations in most agricultural monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978.

    Article  Google Scholar 

  2. Al-Thani, N., Albuainain, A., Alnaimi, F., & Zorba, N. (2020). Drones for sheep livestock monitoring. In 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON) (pp. 672–676). IEEE.

    Google Scholar 

  3. Alzadjali, A., Alali, M. H., Sivakumar, A. N. V., Deogun, J. S., Scott, S., Schnable, J. C., & Shi, Y. (2021). Maize tassel detection from UAV imagery using deep learning. Frontiers in Robotics and AI, 8.

    Google Scholar 

  4. de Andrade Porto, J. V., Rezende, F. P. C., Astolfi, G., de Moraes Weber, V. A., Pache, M. C. B., & Pistori, H. (2021). Automatic counting of cattle with faster R-CNN on UAV images. In Anais do XVII Workshop de Visão Computacional, SBC (pp. 1–6).

    Google Scholar 

  5. Andrew, W., Greatwood, C., & Burghardt, T. (2017). Visual localisation and individual identification of holstein friesian cattle via deep learning. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 2850–2859).

    Google Scholar 

  6. Andrew, W., Greatwood, C., & Burghardt, T. (2019). Aerial animal biometrics: Individual friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 237–243). IEEE.

    Google Scholar 

  7. Anghelache, D., Persu, C., Dumitru, D., Băltatu, C., et al. (2021). Intelligent monitoring of diseased plants using drones. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 51(2), 146–151.

    Article  Google Scholar 

  8. Apolo, O. E. A., Guanter, J. M., Cegarra, G. E., Raja, P., & Ruiz, M. P. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy: The Official Journal of the European Society for Agronomy, 115(4), 183–194.

    Google Scholar 

  9. Apolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Frontiers in Plant Science, 11, 1086.

    Article  Google Scholar 

  10. Ayamga, M., Akaba, S., & Nyaaba, A. A. (2021). Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167(120), 677.

    Google Scholar 

  11. Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sensing, 10(11), 1690.

    Article  Google Scholar 

  12. Barbedo, J. G. A., & Koenigkan, L. V. (2018). Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook on Agriculture, 47(3), 214–222.

    Article  Google Scholar 

  13. Barbedo, J. G. A., Koenigkan, L. V., Santos, T. T., & Santos, P. M. (2019). A study on the detection of cattle in UAV images using deep learning. Sensors, 19(24), 5436.

    Article  Google Scholar 

  14. Barbedo, J. G. A., Koenigkan, L. V., & Santos, P. M. (2020). Cattle detection using oblique UAV images. Drones, 4(4), 75.

    Article  Google Scholar 

  15. Barbedo, J. G. A., Koenigkan, L. V., Santos, P. M., & Ribeiro, A. R. B. (2020). Counting cattle in UAV images-dealing with clustered animals and animal/background contrast changes. Sensors, 20(7), 2126.

    Article  Google Scholar 

  16. Behjati, M., Mohd Noh, A. B., Alobaidy, H. A., Zulkifley, M. A., Nordin, R., & Abdullah, N. F. (2021). Lora communications as an enabler for internet of drones towards large-scale livestock monitoring in rural farms. Sensors, 21(15), 5044.

    Article  Google Scholar 

  17. Bhoi, S. K., Jena, K. K., Panda, S. K., Long, H. V., Kumar, R., Subbulakshmi, P., & Jebreen, H. B. (2021). An internet of things assisted unmanned aerial vehicle based artificial intelligence model for rice pest detection. Microprocessors and Microsystems, 80(103), 607.

    Google Scholar 

  18. Bhoj, S., Tarafdar, A., Singh, M., Gaur, G. (2022). Smart and automatic milking systems: Benefits and prospects. In Smart and sustainable food technologies (pp. 87–121). Springer.

    Google Scholar 

  19. Bouguettaya, A., Zarzour, H., Kechida, A., Taberkit, A. M. (2021). Recent advances on UAV and deep learning for early crop diseases identification: A short review. In 2021 International Conference on Information Technology (ICIT) (pp. 334–339). IEEE.

    Google Scholar 

  20. Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Computing and Applications, 34(12), 9511–9536.

    Article  Google Scholar 

  21. Brunberg, E., Eythórsdóttir, E., Dỳrmundsson, Ó. R., & Grøva, L. (2020). The presence of icelandic leadersheep affects flock behaviour when exposed to a predator test. Applied Animal Behaviour Science, 232(105), 128.

    Google Scholar 

  22. de Camargo, T., Schirrmann, M., Landwehr, N., Dammer, K. H., & Pflanz, M. (2021). Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops. Remote Sensing, 13(9), 1704.

    Article  Google Scholar 

  23. Cauli, N., & Reforgiato Recupero, D. (2022). Survey on videos data augmentation for deep learning models. Future Internet, 14(3), 93.

    Article  Google Scholar 

  24. Chandy, A., et al. (2019). Pest infestation identification in coconut trees using deep learning. Journal of Artificial Intelligence, 1(01), 10–18.

    Google Scholar 

  25. Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., & Huang, Y. M. (2021) Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21,986–21,997.

    Google Scholar 

  26. Chen, J. W., Lin, W. J., Cheng, H. J., Hung, C. L., Lin, C. Y., & Chen, S. P. (2021). A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics, 10(4), 372.

    Article  Google Scholar 

  27. Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019). Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), 1584.

    Article  Google Scholar 

  28. Chew, R., Rineer, J., Beach, R., O’Neil, M., Ujeneza, N., Lapidus, D., Miano, T., Hegarty-Craver, M., Polly, J., & Temple, D. S. (2020). Deep neural networks and transfer learning for food crop identification in UAV images. Drones, 4(1), 7.

    Article  Google Scholar 

  29. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204.

    Article  Google Scholar 

  30. Dileep, M., Navaneeth, A., Ullagaddi, S., & Danti, A. (2020). A study and analysis on various types of agricultural drones and its applications. In 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 181–185). IEEE

    Google Scholar 

  31. Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Vali, E., & Fountas, S. (2021). Combining generative adversarial networks and agricultural transfer learning for weeds identification. Biosystems Engineering, 204, 79–89.

    Article  Google Scholar 

  32. Etienne, A., Ahmad, A., Aggarwal, V., & Saraswat, D. (2021). Deep learning-based object detection system for identifying weeds using UAS imagery. Remote Sensing, 13(24), 5182.

    Article  Google Scholar 

  33. Feng, J., Sun, Y., Zhang, K., Zhao, Y., Ren, Y., Chen, Y., Zhuang, H., & Chen, S. (2022). Autonomous detection of spodoptera frugiperda by feeding symptoms directly from UAV RGB imagery. Applied Sciences, 12(5), 2592.

    Article  Google Scholar 

  34. Fenu, G., & Malloci, F. M. (2021). Forecasting plant and crop disease: an explorative study on current algorithms. Big Data and Cognitive Computing, 5(1), 2.

    Article  Google Scholar 

  35. Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). UAV-based classification of cercospora leaf spot using RGB images. Drones, 5(2), 34.

    Article  Google Scholar 

  36. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.

    Article  Google Scholar 

  37. Hajar, M. M. A., Lazim, I. M., Rosdi, A. R., & Ramli, L. (2021). Autonomous UAV-based cattle detection and counting using YOLOv3 and deep sort.

    Google Scholar 

  38. Hande, M. J. (2021). Indoor farming hydroponic plant grow chamber. International Journal of Scientific Research and Engineering Trends, 7, 2050–2052.

    Google Scholar 

  39. Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., & Jones, M. G. (2021). A survey of deep learning techniques for weed detection from images. Computers and Electronics in Agriculture, 184(106), 067.

    Google Scholar 

  40. Herlin, A., Brunberg, E., Hultgren, J., Högberg, N., Rydberg, A., & Skarin, A. (2021). Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals, 11(3), 829.

    Article  Google Scholar 

  41. Huang, H., Lan, Y., Yang, A., Zhang, Y., Wen, S., & Deng, J. (2020). Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery. International Journal of Remote Sensing, 41(9), 3446–3479.

    Article  Google Scholar 

  42. Iost Filho, F. H., Heldens, W. B., Kong, Z., & de Lange, E. S. (2020). Drones: innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1–25.

    Article  Google Scholar 

  43. Ishengoma, F. S., Rai, I. A., & Said, R. N. (2021). Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks. Computers and Electronics in Agriculture, 184(106), 124.

    Google Scholar 

  44. Islam, N., Rashid, M. M., Wibowo, S., Wasimi, S., Morshed, A., Xu, C., & Moore, S. (2020). Machine learning based approach for weed detection in chilli field using RGB images. In The International Conference on Natural Computation (pp. 1097–1105). Fuzzy Systems and Knowledge Discovery: Springer.

    Google Scholar 

  45. Jintasuttisak, T., Edirisinghe, E., & Elbattay, A. (2022). Deep neural network based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, 192(106), 560.

    Google Scholar 

  46. Joshi, R. C., Kaushik, M., Dutta, M. K., Srivastava, A., & Choudhary, N. (2021). Virleafnet: Automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant. Ecological Informatics, 61(101), 197.

    Google Scholar 

  47. Junos, M. H., Mohd Khairuddin, A. S., Thannirmalai, S., & Dahari, M. (2022). Automatic detection of oil palm fruits from UAV images using an improved YOLO model. The Visual Computer, 38(7), 2341–2355.

    Article  Google Scholar 

  48. Juyal, P., & Sharma, S. (2021). Crop growth monitoring using unmanned aerial vehicle for farm field management. In 2021 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 880–884). IEEE

    Google Scholar 

  49. Kaivosoja, J., Hautsalo, J., Heikkinen, J., Hiltunen, L., Ruuttunen, P., Näsi, R., Niemeläinen, O., Lemsalu, M., Honkavaara, E., & Salonen, J. (2021). Reference measurements in developing UAV systems for detecting pests, weeds, and diseases. Remote Sensing, 13(7), 1238.

    Article  Google Scholar 

  50. Kalantar, A., Edan, Y., Gur, A., & Klapp, I. (2020). A deep learning system for single and overall weight estimation of melons using unmanned aerial vehicle images. Computers and Electronics in Agriculture, 178(105), 748.

    Google Scholar 

  51. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.

    Article  Google Scholar 

  52. Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture, 155, 237–243.

    Article  Google Scholar 

  53. Kerkech, M., Hafiane, A., & Canals, R. (2020). Vddnet: Vine disease detection network based on multispectral images and depth map. Remote Sensing, 12(20), 3305.

    Article  Google Scholar 

  54. Kerkech, M., Hafiane, A., & Canals, R. (2020). Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Computers and Electronics in Agriculture, 174(105), 446.

    Google Scholar 

  55. Kerkech, M., Hafiane, A., Canals, R., & Ros, F. (2020). Vine disease detection by deep learning method combined with 3D depth information. In International Conference on Image and Signal Processing (pp. 82–90). Springer.

    Google Scholar 

  56. Khan, S., Tufail, M., Khan, M. T., Khan, Z. A., & Anwar, S. (2021). Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precision Agriculture, 22(6), 1711–1727.

    Article  Google Scholar 

  57. Kitano, B. T., Mendes, C. C., Geus, A. R., Oliveira, H. C., & Souza, J. R. (2019). Corn plant counting using deep learning and UAV images. IEEE Geoscience and Remote Sensing Letters.

    Google Scholar 

  58. Kitpo, N., & Inoue, M. (2018). Early rice disease detection and position mapping system using drone and IoT architecture. In 2018 12th South East Asian Technical University Consortium (SEATUC) (Vol. 1, pp. 1–5). IEEE

    Google Scholar 

  59. Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study. Drones, 5(2), 41.

    Article  Google Scholar 

  60. Lan, Y., Huang, Z., Deng, X., Zhu, Z., Huang, H., Zheng, Z., Lian, B., Zeng, G., & Tong, Z. (2020). Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Computers and Electronics in Agriculture, 171(105), 234.

    Google Scholar 

  61. Lan, Y., Huang, K., Yang, C., Lei, L., Ye, J., Zhang, J., Zeng, W., Zhang, Y., & Deng, J. (2021). Real-time identification of rice weeds by UAV low-altitude remote sensing based on improved semantic segmentation model. Remote Sensing, 13(21), 4370.

    Article  Google Scholar 

  62. León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167.

    Article  Google Scholar 

  63. Li, B., Yang, B., Liu, C., Liu, F., Ji, R., & Ye, Q. (2021) Beyond max-margin: Class margin equilibrium for few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7363–7372).

    Google Scholar 

  64. Li, D., Sun, X., Elkhouchlaa, H., Jia, Y., Yao, Z., Lin, P., Li, J., & Lu, H. (2021). Fast detection and location of longan fruits using UAV images. Computers and Electronics in Agriculture, 190(106), 465.

    Google Scholar 

  65. Li, J. Y., Duce, S., Joyce, K. E., & Xiang, W. (2021). Seecucumbers: Using deep learning and drone imagery to detect sea cucumbers on coral reef flats. Drones, 5(2), 28.

    Article  Google Scholar 

  66. Liang, W. C., Yang, Y. J., & Chao, C. M. (2019). Low-cost weed identification system using drones. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW) (pp. 260–263). IEEE.

    Google Scholar 

  67. Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X., & Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Computers and Electronics in Agriculture, 197(106), 938.

    Google Scholar 

  68. Lin, Z., & Guo, W. (2021). Cotton stand counting from unmanned aerial system imagery using mobilenet and centernet deep learning models. Remote Sensing, 13(14), 2822.

    Article  Google Scholar 

  69. Liu, C., Jian, Z., Xie, M., & Cheng, I. (2021). A real-time mobile application for cattle tracking using video captured from a drone. In 2021 International Symposium on Networks (pp. 1–6). IEEE: Computers and Communications (ISNCC).

    Google Scholar 

  70. Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A review. Plant Methods, 17(1), 1–18.

    Article  MathSciNet  Google Scholar 

  71. Liu, J., Abbas, I., & Noor, R. S. (2021). Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy, 11(8), 1480.

    Article  Google Scholar 

  72. Loey, M., ElSawy, A., & Afify, M. (2020). Deep learning in plant diseases detection for agricultural crops: A survey. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 11(2), 41–58.

    Google Scholar 

  73. Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science, 24(2), 152–164.

    Article  Google Scholar 

  74. Mathew, A., Amudha, P., & Sivakumari, S. (2020). Deep learning techniques: An overview. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 599–608). Springer

    Google Scholar 

  75. Meena, S. D., & Agilandeeswari, L. (2021). Smart animal detection and counting framework for monitoring livestock in an autonomous unmanned ground vehicle using restricted supervised learning and image fusion. Neural Processing Letters, 53(2), 1253–1285.

    Article  Google Scholar 

  76. Menshchikov, A., Shadrin, D., Prutyanov, V., Lopatkin, D., Sosnin, S., Tsykunov, E., Iakovlev, E., & Somov, A. (2021). Real-time detection of hogweed: UAV platform empowered by deep learning. IEEE Transactions on Computers, 70(8), 1175–1188.

    Article  MATH  Google Scholar 

  77. van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P., & Sharda, A. (2020). Drones in agriculture. In Advances in agronomy (Vo. 162, pp. 1–30).

    Google Scholar 

  78. Mirhaji, H., Soleymani, M., Asakereh, A., & Mehdizadeh, S. A. (2021). Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions. Computers and Electronics in Agriculture, 191(106), 533.

    Google Scholar 

  79. Moeinizade, S., Pham, H., Han, Y., Dobbels, A., & Hu, G. (2022). An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions. Machine Learning with Applications, 7(100), 233.

    Google Scholar 

  80. Mohidem, N. A., Che’Ya, N. N., Juraimi, A. S., Fazlil Ilahi, W. F., Mohd Roslim, M. H., Sulaiman, N., Saberioon, M., & Mohd Noor, N. (2021). How can unmanned aerial vehicles be used for detecting weeds in agricultural fields? Agriculture, 11(10), 1004.

    Article  Google Scholar 

  81. Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming-brief review. Animals, 11(8), 2345.

    Article  Google Scholar 

  82. Nazir, S., & Kaleem, M. (2021). Advances in image acquisition and processing technologies transforming animal ecological studies. Ecological Informatics, 61(101), 212.

    Google Scholar 

  83. Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., & Aydin, N. (2022). Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Computational Biology and Chemistry, 97(107), 619.

    Google Scholar 

  84. Nguyen, H. T., Lopez Caceres, M. L., Moritake, K., Kentsch, S., Shu, H., & Diez, Y. (2021). Individual sick fir tree (abies mariesii) identification in insect infested forests by means of UAV images and deep learning. Remote Sensing, 13(2), 260.

    Article  Google Scholar 

  85. Ofori, M., El-Gayar, O. F. (2020). Towards deep learning for weed detection: Deep convolutional neural network architectures for plant seedling classification.

    Google Scholar 

  86. Osorio, K., Puerto, A., Pedraza, C., Jamaica, D., & Rodríguez, L. (2020). A deep learning approach for weed detection in lettuce crops using multispectral images. AgriEngineering, 2(3), 471–488.

    Article  Google Scholar 

  87. Ouchra, H., & Belangour, A. (2021). Object detection approaches in images: A survey. In Thirteenth International Conference on Digital Image Processing (ICDIP 2021) (Vol. 11878, pp. 118780H). International Society for Optics and Photonics.

    Google Scholar 

  88. Pang, Y., Shi, Y., Gao, S., Jiang, F., Veeranampalayam-Sivakumar, A. N., Thompson, L., Luck, J., & Liu, C. (2020). Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Computers and Electronics in Agriculture, 178(105), 766.

    Google Scholar 

  89. Petso, T., Jamisola, R. S., Mpoeleng, D., & Mmereki, W. (2021) Individual animal and herd identification using custom YOLO v3 and v4 with images taken from a UAV camera at different altitudes. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) (pp. 33–39). IEEE.

    Google Scholar 

  90. Petso, T., Jamisola, R. S., Jr., Mpoeleng, D., Bennitt, E., & Mmereki, W. (2021). Automatic animal identification from drone camera based on point pattern analysis of herd behaviour. Ecological Informatics, 66(101), 485.

    Google Scholar 

  91. Petso, T., Jamisola, R. S., & Mpoeleng, D. (2022). Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research, 68(1), 1–18.

    Article  Google Scholar 

  92. Ponnusamy, V., & Natarajan, S. (2021). Precision agriculture using advanced technology of iot, unmanned aerial vehicle, augmented reality, and machine learning. In Smart Sensors for Industrial Internet of Things (pp. 207–229). Springer.

    Google Scholar 

  93. Qian, W., Huang, Y., Liu, Q., Fan, W., Sun, Z., Dong, H., Wan, F., & Qiao, X. (2020). UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Computers and Electronics in Agriculture, 174(105), 519.

    Google Scholar 

  94. Rachmawati, S., Putra, A. S., Priyatama, A., Parulian, D., Katarina, D., Habibie, M. T., Siahaan, M., Ningrum, E. P., Medikano, A., & Valentino, V. (2021). Application of drone technology for mapping and monitoring of corn agricultural land. In 2021 International Conference on ICT for Smart Society (ICISS) (pp. 1–5). IEEE.

    Google Scholar 

  95. Raheem, D., Dayoub, M., Birech, R., & Nakiyemba, A. (2021). The contribution of cereal grains to food security and sustainability in Africa: potential application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Science, 5(1), 8.

    Article  Google Scholar 

  96. Rahman, M. F. F., Fan, S., Zhang, Y., & Chen, L. (2021). A comparative study on application of unmanned aerial vehicle systems in agriculture. Agriculture, 11(1), 22.

    Article  Google Scholar 

  97. Rangarajan, A. K., Balu, E. J., Boligala, M. S., Jagannath, A., & Ranganathan, B. N. (2022). A low-cost UAV for detection of Cercospora leaf spot in okra using deep convolutional neural network. Multimedia Tools and Applications, 81(15), 21,565–21,589.

    Google Scholar 

  98. Raoult, V., Colefax, A. P., Allan, B. M., Cagnazzi, D., Castelblanco-Martínez, N., Ierodiaconou, D., Johnston, D. W., Landeo-Yauri, S., Lyons, M., Pirotta, V., et al. (2020). Operational protocols for the use of drones in marine animal research. Drones, 4(4), 64.

    Article  Google Scholar 

  99. Razfar, N., True, J., Bassiouny, R., Venkatesh, V., & Kashef, R. (2022). Weed detection in soybean crops using custom lightweight deep learning models. Journal of Agriculture and Food Research, 8(100), 308.

    Google Scholar 

  100. Rivas, A., Chamoso, P., González-Briones, A., & Corchado, J. M. (2018). Detection of cattle using drones and convolutional neural networks. Sensors, 18(7), 2048.

    Article  Google Scholar 

  101. Roosjen, P. P., Kellenberger, B., Kooistra, L., Green, D. R., & Fahrentrapp, J. (2020). Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring. Pest Management Science, 76(9), 2994–3002.

    Article  Google Scholar 

  102. Roy, A. M., Bose, R., & Bhaduri, J. (2022). A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Computing and Applications, 34(5), 3895–3921.

    Article  Google Scholar 

  103. Safarijalal, B., Alborzi, Y., & Najafi, E. (2022). Automated wheat disease detection using a ROS-based autonomous guided UAV.

    Google Scholar 

  104. Safonova, A., Guirado, E., Maglinets, Y., Alcaraz-Segura, D., & Tabik, S. (2021). Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN. Sensors, 21(5), 1617.

    Article  Google Scholar 

  105. Saleem, M. H., Potgieter, J., & Arif, K. M. (2021). Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precision Agriculture, 22(6), 2053–2091.

    Article  Google Scholar 

  106. dos Santos, A., Biesseck, B. J. G., Latte, N., de Lima Santos, I. C., dos Santos, W. P., Zanetti, R., & Zanuncio, J. C. (2022). Remote detection and measurement of leaf-cutting ant nests using deep learning and an unmanned aerial vehicle. Computers and Electronics in Agriculture, 198(107), 071.

    Google Scholar 

  107. dos Santos, Ferreira A., Freitas, D. M., da Silva, G. G., Pistori, H., & Folhes, M. T. (2017). Weed detection in soybean crops using convnets. Computers and Electronics in Agriculture, 143, 314–324.

    Article  Google Scholar 

  108. Sarwar, F., Griffin, A., Periasamy, P., Portas, K., & Law, J. (2018). Detecting and counting sheep with a convolutional neural network. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE.

    Google Scholar 

  109. Sarwar, F., Griffin, A., Rehman, S. U., & Pasang, T. (2021). Detecting sheep in UAV images. Computers and Electronics in Agriculture, 187(106), 219.

    Google Scholar 

  110. Shankar, R. H., Veeraraghavan, A., Sivaraman, K., Ramachandran, S. S., et al. (2018). Application of UAV for pest, weeds and disease detection using open computer vision. In 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 287–292). IEEE

    Google Scholar 

  111. Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., & Naemura, T. (2020). Cattle detection and counting in UAV images based on convolutional neural networks. International Journal of Remote Sensing, 41(1), 31–52.

    Article  Google Scholar 

  112. Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843–4873.

    Article  Google Scholar 

  113. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.

    Article  Google Scholar 

  114. Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440.

    Article  Google Scholar 

  115. Soares, V., Ponti, M., Gonçalves, R., & Campello, R. (2021). Cattle counting in the wild with geolocated aerial images in large pasture areas. Computers and Electronics in Agriculture, 189(106), 354.

    Google Scholar 

  116. Stein, E. W. (2021). The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air, Soil and Water Research, 14(1178622121995), 819.

    Google Scholar 

  117. Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., Nelson, R. J., & Gore, M. A. (2019). Quantitative phenotyping of northern leaf blight in UAV images using deep learning. Remote Sensing, 11(19), 2209.

    Article  Google Scholar 

  118. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73.

    Article  Google Scholar 

  119. Tetila, E. C., Machado, B. B., Menezes, G. K., Oliveira, Ad. S., Alvarez, M., Amorim, W. P., Belete, N. A. D. S., Da Silva, G. G., & Pistori, H. (2019). Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 17(5), 903–907.

    Article  Google Scholar 

  120. Tetila, E. C., Machado, B. B., Astolfi, G., de Souza Belete, N. A., Amorim, W. P., Roel, A. R., & Pistori, H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179(105), 836.

    Google Scholar 

  121. Tiwari, A., Sachdeva, K., & Jain, N. (2021). Computer vision and deep learningbased framework for cattle monitoring. In 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical (pp. 1–6). IEEE: Electronics and Computer Engineering (UPCON).

    Google Scholar 

  122. Ukwuoma, C. C., Zhiguang, Q., Bin Heyat, M. B., Ali, L., Almaspoor, Z., & Monday, H. N. (2022). Recent advancements in fruit detection and classification using deep learning techniques. Mathematical Problems in Engineering.

    Google Scholar 

  123. Vayssade, J. A., Arquet, R., & Bonneau, M. (2019). Automatic activity tracking of goats using drone camera. Computers and Electronics in Agriculture, 162, 767–772.

    Article  Google Scholar 

  124. Veeranampalayam Sivakumar, A. N., Li, J., Scott, S., Psota, E., Jhala, A., Luck, J. D., & Shi, Y. (2020). Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sensing, 12(13), 2136.

    Google Scholar 

  125. Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J. G. (2021). Unmanned aerial vehicles (UAV) in precision agriculture: Applications and challenges. Energies, 15(1), 217.

    Article  Google Scholar 

  126. Wani, J. A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S., & Singh, S. (2021). Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. In Archives of Computational Methods in Engineering (pp. 1–37).

    Google Scholar 

  127. Wittstruck, L., Kühling, I., Trautz, D., Kohlbrecher, M., & Jarmer, T. (2020). UAV-based RGB imagery for hokkaido pumpkin (cucurbita max.) detection and yield estimation. Sensors, 21(1), 118.

    Google Scholar 

  128. Xie, W., Wei, S., Zheng, Z., Jiang, Y., & Yang, D. (2021). Recognition of defective carrots based on deep learning and transfer learning. Food and Bioprocess Technology, 14(7), 1361–1374.

    Article  Google Scholar 

  129. Xiong, J., Liu, Z., Chen, S., Liu, B., Zheng, Z., Zhong, Z., Yang, Z., & Peng, H. (2020). Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosystems Engineering, 194, 261–272.

    Article  Google Scholar 

  130. Xiong, Y., Zeng, X., Chen, Y., Liao, J., Lai, W., & Zhu, M. (2022). An approach to detecting and mapping individual fruit trees integrated YOLOv5 with UAV remote sensing.

    Google Scholar 

  131. Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., Tait, A., & Schneider, D. (2020). Automated cattle counting using mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171(105), 300.

    Google Scholar 

  132. Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Sun, Z., & Li, C. (2020). Livestock classification and counting in quadcopter aerial images using mask R-CNN. International Journal of Remote Sensing, 41(21), 8121–8142.

    Article  Google Scholar 

  133. Yang, Q., Shi, L., Han, J., Yu, J., & Huang, K. (2020). A near real-time deep learning approach for detecting rice phenology based on UAV images. Agricultural and Forest Meteorology, 287(107), 938.

    Google Scholar 

  134. Yang, S., Yang, X., & Mo, J. (2018). The application of unmanned aircraft systems to plant protection in china. Precision Agriculture, 19(2), 278–292.

    Article  Google Scholar 

  135. Zhang, H., Lin, P., He, J., & Chen, Y. (2020) Accurate strawberry plant detection system based on low-altitude remote sensing and deep learning technologies. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 1–5). IEEE.

    Google Scholar 

  136. Zhang, H., Wang, L., Tian, T., & Yin, J. (2021). A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in china. Remote Sensing, 13(6), 1221.

    Article  Google Scholar 

  137. Zhang, R., Wang, C., Hu, X., Liu, Y., Chen, S., et al. (2020) Weed location and recognition based on UAV imaging and deep learning. International Journal of Precision Agricultural Aviation, 3(1).

    Google Scholar 

  138. Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., Han, L., González-Moreno, P., Ma, H., Ye, H., & Sobeih, T. (2019). A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sensing, 11(13), 1554.

    Article  Google Scholar 

  139. Zhou, X., Lee, W. S., Ampatzidis, Y., Chen, Y., Peres, N., & Fraisse, C. (2021). Strawberry Maturity Classification from UAV and Near-Ground Imaging Using Deep Learning. Smart Agricultural Technology, 1(100), 001.

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinao Petso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petso, T., Jamisola, R.S. (2023). A Review on Deep Learning on UAV Monitoring Systems for Agricultural Applications. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_11

Download citation

Publish with us

Policies and ethics