Nothing Special   »   [go: up one dir, main page]

Skip to main content

Style-Guided Shadow Removal

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Shadow removal is an important topic in image restoration, and it can benefit many computer vision tasks. State-of-the-art shadow-removal methods typically employ deep learning by minimizing a pixel-level difference between the de-shadowed region and their corresponding (pseudo) shadow-free version. After shadow removal, the shadow and non-shadow regions may exhibit inconsistent appearance, leading to a visually disharmonious image. To address this problem, we propose a style-guided shadow removal network (SG-ShadowNet) for better image-style consistency after shadow removal. In SG-ShadowNet, we first learn the style representation of the non-shadow region via a simple region style estimator. Then we propose a novel effective normalization strategy with the region-level style to adjust the coarsely re-covered shadow region to be more harmonized with the rest of the image. Extensive experiments show that our proposed SG-ShadowNet outperforms all the existing competitive models and achieves a new state-of-the-art performance on ISTD+, SRD, and Video Shadow Removal benchmark datasets. Code is available at: https://github.com/jinwan1994/SG-ShadowNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The RMSE is actually calculated by the mean absolute error (MAE) as [22].

References

  1. Arbel, E., Hel-Or, H.: Shadow removal using intensity surfaces and texture anchor points. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1202–1216 (2011)

    Article  Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Caelles, S., et al.: One-shot video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognitio, pp. 5320–5329 (2017)

    Google Scholar 

  4. Chen, Z., Long, C., Zhang, L., Xiao, C.: Canet: A context-aware network for shadow removal. In: International Conference on Computer Vision, pp. 4743–4752 (Oct 2021)

    Google Scholar 

  5. Cun, X., Pun, C.M., Shi, C.: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. In: AAAI, pp. 10680–10687 (2020)

    Google Scholar 

  6. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2017)

  7. Fu, L., et al.: Auto-exposure fusion for single-image shadow removal. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10571–10580 (June 2021)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (June 2014)

    Google Scholar 

  9. Girshick, R.B.: Fast rcnn. In: International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  10. Gong, H., Cosker, D.: Interactive shadow removal and ground truth for variable scene categories. In: British Machine Vision Conference (2014)

    Google Scholar 

  11. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Conference on Computer Vision and Pattern Recognition, pp. 1777–1786 (2020)

    Google Scholar 

  12. Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2012)

    Article  Google Scholar 

  13. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: International Conference on Computer Vision (Oct 2017)

    Google Scholar 

  15. Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  16. Hu, X., Jiang, Y., Fu, C.W., Heng, P.A.: Mask-shadowgan: Learning to remove shadows from unpaired data. In: International Conference on Computer Vision (2019)

    Google Scholar 

  17. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: International Conference on Computer Vision (2017)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the International Conference on Machine Learning, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  19. Jin, Y., Sharma, A., Tan, R.T.: Dc-shadownet: Single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In: International Conference on Computer Vision, pp. 5027–5036 (2021)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2015)

  21. Le, H., Goncalves, B., Samaras, D., Lynch, H.: Weakly labeling the antarctic: The penguin colony case. In: IEEE Conference on Computer Vision and Pattern Recognition of Workshop, pp. 18–25 (2019)

    Google Scholar 

  22. Le, H., Samaras, D.: Shadow removal via shadow image decomposition. In: International Conference on Computer Vision (2019)

    Google Scholar 

  23. Le, H., Samaras, D.: From shadow segmentation to shadow removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 264–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_16

    Chapter  Google Scholar 

  24. Le, H., Samaras, D.: Physics-based shadow image decomposition for shadow removal. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  25. Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9361–9370 (June 2021)

    Google Scholar 

  26. Liu, F., Gleicher, M.: Texture-consistent shadow removal. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 437–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_32

    Chapter  Google Scholar 

  27. Liu, H., Wan, Z., Huang, W., Song, Y., Han, X., Liao, J.: Pd-gan: Probabilistic diverse gan for image inpainting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9371–9381 (June 2021)

    Google Scholar 

  28. Liu, Z., Yin, H., Mi, Y., Pu, M., Wang, S.: Shadow removal by a lightness-guided network with training on unpaired data. IEEE Trans. Image Process. 30, 1853–1865 (2021)

    Google Scholar 

  29. Liu, Z., Yin, H., Wu, X., Wu, Z., Mi, Y., Wang, S.: From shadow generation to shadow removal. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  30. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 9(1), 62–66 (1979)

    Article  Google Scholar 

  31. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2332–2341 (2019)

    Google Scholar 

  32. Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.: Deshadownet: A multi-context embedding deep network for shadow removal. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  33. Shechtman, E., Sunkavalli, L.-Q., Kalyan, S.-M., Wang, J.: Appearance harmonization for single image shadow removal. Euro. Assoc. Comput. Graph. 35(7), 189–197 (2016)

    Google Scholar 

  34. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2017)

    Article  Google Scholar 

  35. Shor, Y., Lischinski, D.: The shadow meets the mask: Pyramid-based shadow removal. Comput. Graph. Forum 27, 577–586 (04 2008)

    Google Scholar 

  36. Singh, S., Krishnan, S.: Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (June 2020)

    Google Scholar 

  37. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  38. Vicente, T.F.Y., Hou, L., Yu, C.-P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 816–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_49

    Chapter  Google Scholar 

  39. de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  40. Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  41. Wang, P., Li, Y., Vasconcelos, N.: Rethinking and improving the robustness of image style transfer. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 124–133 (June 2021)

    Google Scholar 

  42. Wang, T., Hu, X., Wang, Q., Heng, P.A., Fu, C.W.: Instance shadow detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1880–1889 (2020)

    Google Scholar 

  43. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  44. Wu, Z., Wu, X., Zhang, X., Wang, S., Ju, L.: Semantic stereo matching with pyramid cost volumes. In: International Conference on Computer Vision, pp. 7483–7492 (2019)

    Google Scholar 

  45. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125, 3–18 (2015)

    Article  MathSciNet  Google Scholar 

  46. Yang, Q., Tan, K.H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21(10), 4361–4368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, T., et al.: Region normalization for image inpainting. In: AAAI, pp. 12733–12740 (2020)

    Google Scholar 

  48. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  49. Zhang, S., Liang, R., Wang, M.: Shadowgan: Shadow synthesis for virtual objects with conditional adversarial networks. Comput. Visual Media 5(1), 105–115 (2019)

    Google Scholar 

  50. Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 122–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_8

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities (2020YJS031), National Nature Science Foundation of China (51827813, 61472029, U1803264), and Research and Development Program of Beijing Municipal Education Commission (KJZD20191000402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Yin or Song Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9207 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, J., Yin, H., Wu, Z., Wu, X., Liu, Y., Wang, S. (2022). Style-Guided Shadow Removal. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics