Nothing Special   »   [go: up one dir, main page]

Skip to main content

Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Magnetization transfer contrast magnetic resonance fingerprinting (MTC-MRF) is a novel quantitative imaging technique that simultaneously measures several tissue parameters of semisolid macromolecule and free bulk water. In this study, we propose an Only-Train-Once MR fingerprinting (OTOM) framework that estimates the free bulk water and MTC tissue parameters from MR fingerprints regardless of MRF schedule, thereby avoiding time-consuming process such as generation of training dataset and network training according to each MRF schedule. A recurrent neural network is designed to cope with two types of variants of MRF schedules: 1) various lengths and 2) various patterns. Experiments on digital phantoms and in vivo data demonstrate that our approach can achieve accurate quantification for the water and MTC parameters with multiple MRF schedules. Moreover, the proposed method is in excellent agreement with the conventional deep learning and fitting methods. The flexible OTOM framework could be an efficient tissue quantification tool for various MRF protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting deep reconstruction network (drone). Magn. Resonan. Med. 80(3), 885–894 (2018). https://doi.org/10.1002/mrm.27198

    Article  Google Scholar 

  2. Filippi, M., Rocca, M.A., Martino, G., Horsfield, M.A., Comi, G.: Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43(6), 809–814 (1998). https://doi.org/10.1002/ana.410430616

    Article  Google Scholar 

  3. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–10 (2005). https://doi.org/10.1016/j.neunet.2005.06.042

    Article  Google Scholar 

  4. Hamilton, J.I., Seiberlich, N.: Machine learning for rapid magnetic resonance fingerprinting tissue property quantification. Proc. IEEE Inst. Electr. Electron. Eng. 108(1), 69–85 (2020). https://doi.org/10.1109/JPROC.2019.2936998

    Article  Google Scholar 

  5. Henkelman, R.M., Huang, X., Xiang, Q.S., Stanisz, G.J., Swanson, S.D., Bronskill, M.J.: Quantitative interpretation of magnetization transfer. Magn. Reson. Med. 29(6), 759–66 (1993). https://doi.org/10.1002/mrm.1910290607

    Article  Google Scholar 

  6. Heo, H.Y., et al.: Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. Neuroimage 189, 202–213 (2019). https://doi.org/10.1016/j.neuroimage.2019.01.034

    Article  Google Scholar 

  7. Heo, H.Y., et al.: Prospective acceleration of parallel RF transmission-based 3d chemical exchange saturation transfer imaging with compressed sensing. Magn. Reson. Med. 82(5), 1812–1821 (2019). https://doi.org/10.1002/mrm.27875

    Article  Google Scholar 

  8. Heo, H.Y., Zhang, Y., Lee, D.H., Hong, X., Zhou, J.: Quantitative assessment of amide proton transfer (apt) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 tesla. Magn. Reson. Med. 75(1), 137–49 (2016). https://doi.org/10.1002/mrm.25581

  9. Heo, H.Y., Zhang, Y., Lee, D.H., Jiang, S., Zhao, X., Zhou, J.: Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn. Reson. Med. 77(2), 779–786 (2017). https://doi.org/10.1002/mrm.26141

    Article  Google Scholar 

  10. Hilbert, T., et al.: Magnetization transfer in magnetic resonance fingerprinting. Magn. Reson. Med. 84(1), 128–141 (2020). https://doi.org/10.1002/mrm.28096

    Article  MathSciNet  Google Scholar 

  11. Kang, B., Kim, B., Schar, M., Park, H., Heo, H.Y.: Unsupervised learning for magnetization transfer contrast MR fingerprinting: application to CEST and nuclear overhauser enhancement imaging. Magn. Reson. Med. 85(4), 2040–2054 (2021). https://doi.org/10.1002/mrm.28573

  12. Kang, B., Kim, B., Park, H., Heo, H.Y.: Learning-based optimization of acquisition schedule for magnetization transfer contrast MR fingerprinting. NMR Biomed. 35(5), e4662 (2022). https://doi.org/10.1002/nbm.4662

    Article  Google Scholar 

  13. Kim, B., Schar, M., Park, H., Heo, H.Y.: A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging. Neuroimage 221, 117165 (2020). https://doi.org/10.1016/j.neuroimage.2020.117165

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  15. Liu, H., van der Heide, O., van den Berg, C.A.T., Sbrizzi, A.: Fast and accurate modeling of transient-state, gradient-spoiled sequences by recurrent neural networks. NMR Biomed. 34(7), e4527 (2021). https://doi.org/10.1002/nbm.4527

    Article  Google Scholar 

  16. Ma, D., et al.: Magnetic resonance fingerprinting. Nature 495(7440), 187–92 (2013). https://doi.org/10.1038/nature11971

    Article  Google Scholar 

  17. Perlman, O., Farrar, C.T., Heo, H.Y.: MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification. NMR Biomed. e4710. https://doi.org/10.1002/nbm.4710

  18. Perrin, J., et al.: Sex differences in the growth of white matter during adolescence. NeuroImage 45(4), 1055–1066 (2009). https://doi.org/10.1016/j.neuroimage.2009.01.023

    Article  Google Scholar 

  19. Quesson, B., Thiaudiere, E., Delalande, C., Chateil, J.F., Moonen, C.T., Canioni, P.: Magnetization transfer imaging of rat brain under non-steady-state conditions. contrast prediction using a binary spin-bath model and a super-lorentzian lineshape. J. Magn. Reson. 130(2), 321–8 (1998). https://doi.org/10.1006/jmre.1997.1326

  20. Sled, J.G.: Modelling and interpretation of magnetization transfer imaging in the brain. Neuroimage 182, 128–135 (2018). https://doi.org/10.1016/j.neuroimage.2017.11.065

    Article  Google Scholar 

  21. Wang, D., Ostenson, J., Smith, D.S.: SNAPMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs. Magn. Reson. Imaging 66, 248–256 (2020). https://doi.org/10.1016/j.mri.2019.11.015

    Article  Google Scholar 

  22. Xanthis, C.G., Aletras, A.H.: COREMRI: a high-performance, publicly available MR simulation platform on the cloud. PLoS ONE 14(5), e0216594 (2019). https://doi.org/10.1371/journal.pone.0216594

    Article  Google Scholar 

  23. Yang, M., Jiang, Y., Ma, D., Mehta, B.B., Griswold, M.A.: Game of learning BLOCH equation simulations for MR fingerprinting. arXiv preprint arXiv:2004.02270 (2020)

  24. van Zijl, P.C.M., Lam, W.W., Xu, J., Knutsson, L., Stanisz, G.J.: Magnetization transfer contrast and chemical exchange saturation transfer MRI features and analysis of the field-dependent saturation spectrum. Neuroimage 168, 222–241 (2018). https://doi.org/10.1016/j.neuroimage.2017.04.045

Download references

Acknowledgement

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711138003, KMDF-RnD KMDF_PR_20200901_0041-2021-02), and by grants from the National Institutes of Health (R01EB029974 and R01NS112242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyunWook Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, B., Heo, HY., Park, H. (2022). Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics