Nothing Special   »   [go: up one dir, main page]

Skip to main content

Beyond the Visible Spectrum: Is Person Identity Well Preserved in Thermal Cameras?

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13501))

Included in the following conference series:

  • 1128 Accesses

Abstract

Face recognition is a well investigated problem in the computer vision community. Beyond the visible spectrum, it is identified as an active-oriented and attractive research area. In particular, thermal cameras have recently emerged as increasingly important sensors for visual surveillance applications. In addition to the fact that these cameras operate well in challenging environments such as adverse weather and lighting conditions, they are commonly known as keystone biometric solution that preserves person identity. In this paper, we intend to prove that faces could be highly recognized from thermal cameras using a powerful generative adversarial model. This model is employed to deal with the domain shift between thermal and visible sensors. Extensive experiments of different generative models and face recognition systems demonstrate the effectiveness of the proposed pipeline to reveal the person identity even though it is acquired by different sensing modalities, with significant facial variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghabiglou, A., Eksioglu, E.M.: MR image reconstruction based on densely connected residual generative adversarial network–DCR-GAN. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds.) ICCCI 2021. CCIS, vol. 1463, pp. 679–689. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88113-9_55

    Chapter  Google Scholar 

  2. Anghelone, D., Chen, C., Ross, A., Dantcheva, A.: Beyond the visible: A survey on cross-spectral face recognition. arXiv preprint arXiv:2201.04435 (2022)

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Google Scholar 

  4. Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  5. Bourlai, T., Hornak, L.A.: Face recognition outside the visible spectrum. Image Vis. Comput. 55, 14–17 (2016)

    Article  Google Scholar 

  6. Chen, C., Ross, A.: Matching thermal to visible face images using a semantic-guided generative adversarial network. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–8. IEEE (2019)

    Google Scholar 

  7. Goldstein, A.J., Harmon, L.D., Lesk, A.B.: Identification of human faces. Proc. IEEE 59(5), 748–760 (1971)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems (nips) (2014)

    Google Scholar 

  9. Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019)

    Article  Google Scholar 

  10. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition (2008)

    Google Scholar 

  11. Iranmanesh, S.M., Dabouei, A., Kazemi, H., Nasrabadi, N.M.: Deep cross polarimetric thermal-to-visible face recognition. In: 2018 International Conference on Biometrics (ICB), pp. 166–173. IEEE (2018)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  13. Lin, Y., Wang, Y., Li, Y., Gao, Y., Wang, Z., Khan, L.: Attention-based spatial guidance for image-to-image translation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 816–825 (2021)

    Google Scholar 

  14. Mallat, K., Damer, N., Boutros, F., Kuijper, A., Dugelay, J.L.: Cross-spectrum thermal to visible face recognition based on cascaded image synthesis. In: 2019 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2019)

    Google Scholar 

  15. Mallat, K., Dugelay, J.L.: A benchmark database of visible and thermal paired face images across multiple variations. In: 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2018)

    Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision. pp. 2794–2802 (2017)

    Google Scholar 

  17. Marnissi, M.A., Fradi, H., Sahbani, A., Amara, N.E.B.: Thermal image enhancement using generative adversarial network for pedestrian detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6509–6516. IEEE (2021)

    Google Scholar 

  18. Marnissi, M.A., Fradi, H., Sahbani, A., Amara, N.E.B.: Unsupervised thermal-to-visible domain adaptation method for pedestrian detection. Pattern Recogn. Lett. 153, 222–231 (2022)

    Article  Google Scholar 

  19. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  20. Morís, D.I., de Moura Ramos, J.J., Buján, J.N., Hortas, M.O.: Data augmentation approaches using cycle-consistent adversarial networks for improving covid-19 screening in portable chest x-ray images. Expert Syst. Appl. 185, 115681 (2021)

    Article  Google Scholar 

  21. Orji, C., Hurwitz, E., Hasan, A.: Thermal imaging using cnn and knn classifiers with fwt, pca and lda algorithms. In: Seventh International Conference on Computer Science, Engineering and Information Technology (CCSEIT 2017), pp. 133–143 (2017)

    Google Scholar 

  22. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition (2015)

    Google Scholar 

  23. Peng, M., Wang, C., Chen, T., Liu, G.: Nirfacenet: A convolutional neural network for near-infrared face identification. Information 7(4), 61 (2016)

    Article  Google Scholar 

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  25. Riggan, B.S., Short, N.J., Hu, S., Kwon, H.: Estimation of visible spectrum faces from polarimetric thermal faces. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–7. IEEE (2016)

    Google Scholar 

  26. Riggan, B.S., Short, N.J., Hu, S.: Thermal to visible synthesis of face images using multiple regions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 30–38. IEEE (2018)

    Google Scholar 

  27. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  28. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)

  29. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  30. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  31. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  32. Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021)

    Article  Google Scholar 

  33. Wang, Y., Ming-Shi, C.: Human face recognition using thermal image. J. Med. Biol. Eng. 22(2), 97–102 (2002)

    Google Scholar 

  34. Zhang, H., Patel, V.M., Riggan, B.S., Hu, S.: Generative adversarial network-based synthesis of visible faces from polarimetrie thermal faces. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 100–107. IEEE (2017)

    Google Scholar 

  35. Zhang, H., Riggan, B.S., Hu, S., Short, N.J., Patel, V.M.: Synthesis of high-quality visible faces from polarimetric thermal faces using generative adversarial networks. Int. J. Comput. Vision 127(6), 845–862 (2019)

    Article  Google Scholar 

  36. Zhang, T., Wiliem, A., Yang, S., Lovell, B.: Tv-gan: generative adversarial network based thermal to visible face recognition. In: 2018 International Conference on Biometrics (ICB), pp. 174–181. IEEE (2018)

    Google Scholar 

  37. Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of medical image computing and computer assisted intervention. Academic Press (2019)

    Google Scholar 

  38. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank A. Ayed for his important development skills.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Fradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Said, A., Fradi, H., Lamouchi, D., Marnissi, M.A. (2022). Beyond the Visible Spectrum: Is Person Identity Well Preserved in Thermal Cameras?. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics