Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum Models as Kernel Methods

  • Chapter
  • First Online:
Machine Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

Abstract

This chapter is an adapted version of the preprint article “Quantum machine learning models are kernel methods” by Maria Schuld [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term feature vectors derives from the fact that they are elements of a vector space, not that they are vectors in the sense of the space \(\mathbb {C}^N\) or \(\mathbb {R}^N\).

  2. 2.

    See also www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf for a great overview.

  3. 3.

    Note that this is also true when using the trained model for predictions, where we need to compute the distance between a new input to any training input in feature space as shown in Eq. (6.51). However, in maximum margin classifiers, or support vector machines in the stricter sense, most \(\alpha _m\) coefficients are zero, and only the distances to a few “support vectors” are needed.

  4. 4.

    See https://pennylane.ai/qml/demos/tutorial_kernel_based_training.html.

References

  1. Schuld, M.: Quantum machine learning models are kernel methods (2021). arXiv preprint arXiv:2101.11020

  2. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces (2018). arXiv preprint arXiv:1803.07128v1

  3. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212 (2019)

    Google Scholar 

  4. Blank, C., Park, D.K., Rhee, J.K.K., Petruccione, F.: Quantum classifier with tailored quantum kernel. npj Quantum Inf. 6(1), 1–7 (2020)

    Google Scholar 

  5. Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A, 384(21), 126422 (2020)

    Google Scholar 

  6. Kübler, J.M., Muandet, K., Schölkopf, B.: Quantum mean embedding of probability distributions. Phys. Rev. Res. 1(3), 033159 (2019)

    Google Scholar 

  7. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning (2020). arXiv preprint arXiv:2001.03622

  8. Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up in supervised machine learning (2020). arXiv preprint arXiv:2010.02174

  9. Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning (2020). arXiv preprint arXiv:2011.01938

  10. Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media (2008)

    Google Scholar 

  11. Schölkopf, B., Smola, A.J.: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002)

    Google Scholar 

  12. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Google Scholar 

  13. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Google Scholar 

  14. Wolf, M.: Quantum channels and operations: Guided tour (2012). https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

  15. Jagadish, V., Petruccione, F.: An invitation to quantum channels. Quanta 7(1), 54–67 (2018)

    Article  MathSciNet  Google Scholar 

  16. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Blank, C., McKiernan, K., Killoran, N.: Pennylane: Automatic differentiation of hybrid quantum-classical computations (2018). arXiv preprint arXiv:1811.04968

  17. Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quantum support vector machines (2016). arXiv preprint arXiv:1612.03713

  18. Schuld, M., Sweke, R., Meyer, J.J.: The effect of data encoding on the expressive power of variational quantum machine learning models (2020). arXiv preprint arXiv:2008.08605

  19. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5(1), 1–9 (2019)

    Google Scholar 

  20. Cheng, S., Chen, J., Wang, L.: Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy 20(8), 583 (2018)

    Google Scholar 

  21. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  22. Rahimi, A., Recht, B., et al.: Random features for large-scale kernel machines. In: NIPS, vol. 3, p. 5. Citeseer (2007)

    Google Scholar 

  23. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning (2018). arXiv preprint arXiv:1803.00745

  24. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), (2019)

    Google Scholar 

  25. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Google Scholar 

  26. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5) (2012)

    Google Scholar 

  27. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 (2014)

    Google Scholar 

  28. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2021). Quantum Models as Kernel Methods. In: Machine Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-83098-4_6

Download citation

Publish with us

Policies and ethics