Abstract
This chapter is an adapted version of the preprint article “Quantum machine learning models are kernel methods” by Maria Schuld [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The term feature vectors derives from the fact that they are elements of a vector space, not that they are vectors in the sense of the space \(\mathbb {C}^N\) or \(\mathbb {R}^N\).
- 2.
See also www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf for a great overview.
- 3.
Note that this is also true when using the trained model for predictions, where we need to compute the distance between a new input to any training input in feature space as shown in Eq. (6.51). However, in maximum margin classifiers, or support vector machines in the stricter sense, most \(\alpha _m\) coefficients are zero, and only the distances to a few “support vectors” are needed.
- 4.
References
Schuld, M.: Quantum machine learning models are kernel methods (2021). arXiv preprint arXiv:2101.11020
Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces (2018). arXiv preprint arXiv:1803.07128v1
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212 (2019)
Blank, C., Park, D.K., Rhee, J.K.K., Petruccione, F.: Quantum classifier with tailored quantum kernel. npj Quantum Inf. 6(1), 1–7 (2020)
Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A, 384(21), 126422 (2020)
Kübler, J.M., Muandet, K., Schölkopf, B.: Quantum mean embedding of probability distributions. Phys. Rev. Res. 1(3), 033159 (2019)
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning (2020). arXiv preprint arXiv:2001.03622
Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up in supervised machine learning (2020). arXiv preprint arXiv:2010.02174
Huang, H.Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning (2020). arXiv preprint arXiv:2011.01938
Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media (2008)
Schölkopf, B., Smola, A.J.: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002)
Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)
McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)
Wolf, M.: Quantum channels and operations: Guided tour (2012). https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
Jagadish, V., Petruccione, F.: An invitation to quantum channels. Quanta 7(1), 54–67 (2018)
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Blank, C., McKiernan, K., Killoran, N.: Pennylane: Automatic differentiation of hybrid quantum-classical computations (2018). arXiv preprint arXiv:1811.04968
Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quantum support vector machines (2016). arXiv preprint arXiv:1612.03713
Schuld, M., Sweke, R., Meyer, J.J.: The effect of data encoding on the expressive power of variational quantum machine learning models (2020). arXiv preprint arXiv:2008.08605
Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5(1), 1–9 (2019)
Cheng, S., Chen, J., Wang, L.: Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy 20(8), 583 (2018)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Rahimi, A., Recht, B., et al.: Random features for large-scale kernel machines. In: NIPS, vol. 3, p. 5. Citeseer (2007)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning (2018). arXiv preprint arXiv:1803.00745
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), (2019)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5) (2012)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 (2014)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Schuld, M., Petruccione, F. (2021). Quantum Models as Kernel Methods. In: Machine Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-83098-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-83098-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83097-7
Online ISBN: 978-3-030-83098-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)