Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Modal and Temporal Translations of Generalized Basic Logic

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13027))

Abstract

We introduce a family of modal expansions of Łukasiewicz logic that are designed to accommodate modal translations of generalized basic logic (as formulated with exchange, weakening, and falsum). We further exhibit algebraic semantics for each logic in this family, in particular showing that all of them are algebraizable in the sense of Blok and Pigozzi. Using this algebraization result and an analysis of congruences in the pertinent varieties, we establish that each of the introduced modal Łukasiewicz logics has a local deduction-detachment theorem. By applying Jipsen and Montagna’s poset product construction, we give two translations of generalized basic logic with exchange, weakening, and falsum in the style of the celebrated Gödel-McKinsey-Tarski translation. The first of these interprets generalized basic logic in a modal Łukasiewicz logic in the spirit of the classical modal logic S4, whereas the second interprets generalized basic logic in a temporal variant of the latter.

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 670624).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recall that formulas are constructed recursively by stipulating that p is a formula for each \(p\in \mathsf{Var}\), and further that if \(\omega \) is an n-ary connective symbol and \(\varphi _1,\dots ,\varphi _n\) are formulas, then so is \(\omega (\varphi _1,\dots ,\varphi _n)\). As usual, we write binary connectives using infix notation.

  2. 2.

    Most studies refer to these algebras as bounded commutative GBL-algebras or GBL\(_{ewf}\)-algebras. Because we always assume boundedness and commutativity, we call them GBL-algebras in order to simplify terminology.

References

  1. Aguzzoli, S., Bianchi, M., Marra, V.: A temporal semantics for basic logic. Studia Logica 92, 147–162 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aguzzoli, S., Gerla, B., Marra, V.: Embedding Gödel propositional logic into Prior’s tense logic. In: Magdalena, L., Ojeda Aciego, M., Verdegay, J. (eds.) Proceedings of 12th International Conference Information Processing and Management of Uncertainty for Knowledge-Based Systems, pp. 992–999 (2008)

    Google Scholar 

  3. Blok, W., Pigozzi, D.: Algebraizable Logics, vol. 77. Memoirs of the American Mathematical Society, New York (1989)

    MATH  Google Scholar 

  4. Blok, W., Pigozzi, D.: Local deduction theorems in algebraic logic. In: Andréka, H., Monk, J., Németi, I. (eds.) Algebraic Logic, Colloquia Mathematica Societatis János Bolyai, vol. 54, pp. 75–109. North-Holland, Amsterdam (1991)

    Google Scholar 

  5. Bova, S., Montagna, F.: The consequence relation in the logic of commutative GBL-algebras is PSPACE-complete. Theor. Comput. Sci. 410, 1143–1158 (2009)

    Article  MathSciNet  Google Scholar 

  6. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Springer, New York (1981)

    Book  Google Scholar 

  7. Chagrov, A., Zakharyaschev, M.: Modal companions of intermediate propositional logics. Studia Logica 51, 49–82 (1992)

    Article  MathSciNet  Google Scholar 

  8. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic-Studia Logica Library, Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  9. Cignoli, R., Torrens, A.: Hájek’s basic fuzzy logic and Łukasiewicz infinite-valued logic. Arch. Math. Logic 42, 361–370 (2003)

    Article  MathSciNet  Google Scholar 

  10. Esteva, F., Godo, L., Rodríguez, R.: On the relation between modal and multi-modal logics over Łukasiewicz logic. In: Proceedings of 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1–6 (2017)

    Google Scholar 

  11. Font, J.: Abstract Algebraic Logic: An Introductory Textbook. College Publications, London (2016)

    MATH  Google Scholar 

  12. Fussner, W.: Poset products as relational models. Studia Logica (2021). https://doi.org/10.1007/s11225-021-09956-z

  13. Galatos, N., Jipsen, P.: A survey of generalized basic logic algebras. In: Cintula, P., Hanikova, Z., Svejdar, V. (eds.) Witnessed Years: Essays in Honour of Petr Hájek, pp. 305–331. College Publications, London (2009)

    Google Scholar 

  14. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  15. Galatos, N., Ono, H.: Algebraization, parametrized local deduction theorem and interpolation for substructural logics over \({ FL}\). Studia Logica 83, 279–308 (2006)

    Article  MathSciNet  Google Scholar 

  16. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic-Studia Logica Library, Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  17. Jipsen, P.: Generalizations of Boolean products for lattice-ordered algebras. Ann. Pure Appl. Logic 161, 228–234 (2009)

    Article  MathSciNet  Google Scholar 

  18. Jipsen, P., Montagna, F.: On the structure of generalized BL-algebras. Algebra Universalis 55, 226–237 (2006)

    Article  MathSciNet  Google Scholar 

  19. Jipsen, P., Montagna, F.: The Blok-Ferreirim theorem for normal GBL-algebras and its applications. Algebra Universalis 60, 381–404 (2009)

    Article  MathSciNet  Google Scholar 

  20. Jipsen, P., Montagna, F.: Embedding theorems for classes of GBL-algebras. J. Pure Appl. Algebra 214, 1559–1575 (2010)

    Article  MathSciNet  Google Scholar 

  21. Metcalfe, G., Montagna, F., Tsinakis, C.: Amalgamation and interpolation in ordered algebras. J. Algebra 402, 21–82 (2014)

    Article  MathSciNet  Google Scholar 

  22. O’Hearn, P., Pym, D.: The logic of bunched implications. Bull. Symb. Logic 5, 215–244 (1999)

    Article  MathSciNet  Google Scholar 

  23. Prior, A.: Time and Modality. Clarendon Press, Oxford (1957)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Fussner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fussner, W., Zuluaga Botero, W. (2021). Some Modal and Temporal Translations of Generalized Basic Logic. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science(), vol 13027. Springer, Cham. https://doi.org/10.1007/978-3-030-88701-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88701-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88700-1

  • Online ISBN: 978-3-030-88701-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics