Nothing Special   »   [go: up one dir, main page]

Skip to main content

Relation-Based Knowledge Distillation for Anomaly Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

Abstract

Anomaly detection is a binary classification task, which is to judge whether the input image contains an anomaly or not and the difficulty is that only normal samples are available at training. Due to this unsupervised nature, the classic supervised classification methods will fail. Knowledge distillation-based methods for unsupervised anomaly detection have recently drawn attention as it has shown the outstanding performance. In this paper, we present a novel knowledge distillation-based approach for anomaly detection (RKDAD). We propose to use the “distillation” of the “FSP matrix” from adjacent layers of a teacher network, pre-trained on ImageNet, into a student network which has the same structure as the teacher network to solve the anomaly detection problem, we show that the “FSP matrix” are more discriminative features for normal and abnormal samples than other traditional features like the latent vectors in autoencoders. The “FSP matrix” is defined as the inner product between features from two layers and we detect anomalies using the discrepancy between teacher’s and student’s corresponding “FSP matrix”. To the best of our knowledge, it is the first work to use the relation-based knowledge distillation framework to solve the unsupervised anomaly detection task. We show that our method can achieve competitive results compared to the state-of-the-art methods on MNIST, F-MNIST and surpass the state-of-the-art results on the object images in MVTecAD.

This research was supported by NSFC (No. 61871074).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shuang, M., Yudan, W., Guojun, W.: Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 18(4), 1064 (2018)

    Article  Google Scholar 

  2. Bergmann P., Fauser M., Sattlegger D., et al.: MVTec AD — a Comprehensive Real-World dataset for unsupervised anomaly detection. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9592–9600 (2019)

    Google Scholar 

  3. Zhe L., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  4. Zhou, J.T., Du, J., Zhu, H., et al.: AnomalyNet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14(10), 2537–2550 (2019)

    Article  Google Scholar 

  5. Bergmann P., Fauser M., Sattlegger D., et al.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4182–4191 (2020)

    Google Scholar 

  6. Salehi M., Sadjadi N., Baselizadeh S., et al.: Multiresolution knowledge distillation for anomaly detection. arXiv preprint arXiv: 2011.11108 (2020)

    Google Scholar 

  7. Abati D., Porrello A., Calderara S., Cucchiara R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

    Google Scholar 

  8. Gong D., Liu L., Le V., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1705–1714 (2019)

    Google Scholar 

  9. Venkataramanan, S., Peng, K.-C., Singh, R.V., Mahalanobis, A.: Attention guided anomaly localization in images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 485–503. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_29

    Chapter  Google Scholar 

  10. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  11. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  12. Akay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Yim, J., Joo, D., Bae, J., et al.: A Gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7130–7138 (2017)

    Google Scholar 

  15. Jia, D., Wei, D., Richard, S., Li-Jia, L., Kai, L., Fei-Fei L.: Imagenet: a large-scale hierarchical imagedatabase. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks For Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Diederik, P.K., Jimmy, B.: Adam: a method forstochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. LeCun, Y., Cortes, C., et al. http://yann.lecun.com/exdb/mnist. Accessed 05 April 2021

  19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a Novel Image Dataset For Benchmarking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747 (2017)

  20. Salehi, M., Arya, A., Pajoum, B., et al.: Arae: Adversarially robust training of autoencoders improves novelty detection. arXiv preprint arXiv:2003.05669 (2020)

  21. Chen, Y., Xiang, S.Z., Huang, T.S.: One-class svm for learning in image retrieval. In: Proceedings 2001 International Conference on Image Processing, pp. 34–37 (2001)

    Google Scholar 

  22. Ruff, L., Vandermeulen, R.A., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018)

    Google Scholar 

  23. Li, X., Kiringa, I., Yeap, T., et al.: Exploring deep anomaly detection methods based on capsule net. In: ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning, pp. 375–387 (2020)

    Google Scholar 

  24. Perera, P., Nallapati, R., Bing, X.: Ocgan: one-class novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  25. Zong, B., Song, Q., Martin Renqiang, M., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  26. Shuangfei, Z., Yu, C., Weining, L., Zhongfei, Z.: Deep structured energy-based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109 (2016)

    Google Scholar 

  27. Sabokrou, M., Pourreza, M., Fayyaz, M., et al.: Avid: adversarial visual irregularity detection. In: Asian Conference on Computer Vision, pp. 488–505 (2018)

    Google Scholar 

  28. Bergmann, P., Lwe, S., Fauser, M., et al.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pp. 372–180 (2019)

    Google Scholar 

  29. Dehaene, D., Frigo, O., Combrexelle, S., et al.: Iterative energy-based projection on a normal data manifold for anomaly localization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  30. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, pp. 9758–9769 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, H., Yang, L., Liu, Z. (2021). Relation-Based Knowledge Distillation for Anomaly Detection. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics