Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structure-Aware Multi-scale Hierarchical Graph Convolutional Network for Skeleton Action Recognition

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Included in the following conference series:

  • 2723 Accesses

Abstract

In recent years, graph convolutional neural network (GCNN) has achieved the most advanced results in skeleton action recognition tasks. However, existing models mainly focus on extracting local information from joint-level and part-level, but ignore the global information of frame-level and the relevance between multiple levels, which lead to the loss of hierarchical information. Moreover, these models consider the non-physical connection relationship between nodes but neglect the dependence between body parts. The lose of topology information directly results in poor model performance. In this paper, we propose a structure-aware multi-scale hierarchical graph convolutional network (SAMS-HGCN) model, which includes two modules: a structure-aware hierarchical graph pooling block (SA-HGP Block) and a multi-scale fusion module (MSF module). Specifically, SA-HGP Block establishes a hierarchical network to capture the topological information of multiple levels by using the hierarchical graph pooling (HGP) operation and model the dependence among parts via the structure-aware learning (SA Learning) operation. MSF module fuses information of different scales in each level to obtain multi-scale global structural information. Experiments show that our method achieves comparable performances to state-of-the-art methods on NTU-RGB+D and Kinetics-Skeleton datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Cao, C., Cheng, J., Lu, H.: EgoGesture: a new dataset and benchmark for egocentric hand gesture recognition. IEEE Trans. Multimed. 20, 1038–1050 (2018)

    Article  Google Scholar 

  2. Ziaeefard, M., Bergevin, R.: Semantic human activity recognition: a literature review. Pattern Recognit. 48, 2329–2345 (2015)

    Article  Google Scholar 

  3. Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recognit. Lett. 48(1), 70–80 (2014)

    Article  Google Scholar 

  4. Han, F., Reily, B., Hoff, W., Zhan, H.: Space-time representation of people based on 3D skeletal data: a review. Comput. Vis. Image Underst. 158(C), 85–105 (2017)

    Article  Google Scholar 

  5. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19(2), 4–10 (2012)

    Article  Google Scholar 

  6. Zhu, W., Lan, C., Xing, J., Zeng, W., Xie, X.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: AAAI 2016 (2016)

    Google Scholar 

  7. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3D action recognition. In: CVPR 2017 (2017)

    Google Scholar 

  8. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI 2018 (2018)

    Google Scholar 

  9. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. IEEE (2020)

    Google Scholar 

  10. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: CVPR 2019 (2019)

    Google Scholar 

  11. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: CVPR 2020 (2020)

    Google Scholar 

  12. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition (2018)

    Google Scholar 

  13. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks (2017)

    Google Scholar 

  14. Si, C., Jing, Y., Wang, W., Wang, L., Tan, T.: Skeleton-based action recognition with spatial reasoning and temporal stack learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part I. LNCS, vol. 11205, pp. 106–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_7

    Chapter  Google Scholar 

  15. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. Human Action Recognition with Depth Cameras (2014)

    Google Scholar 

  16. Hussein, M.E., Torki, M., Gowayyed, M.A., El-Saban, M.: Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations. In: International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  17. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR 2014 (2014)

    Google Scholar 

  18. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR, pp. 1110–1118 (2015)

    Google Scholar 

  19. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  20. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data (2016)

    Google Scholar 

  21. Kim, T.S., Reiter, A.: Interpretable 3D human action analysis with temporal convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)

    Google Scholar 

  22. Liu, M., Hong, L., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recognit. 68, 346–362 (2017)

    Article  Google Scholar 

  23. Gao, X., Hu, W., Tang, J., Liu, J., Guo, Z.: Optimized skeleton-based action recognition via sparsified graph regression. In: The 27th ACM International Conference (2019)

    Google Scholar 

  24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016)

    Google Scholar 

  25. Martins, A., Astudillo, R.F.: From softmax to sparsemax: a sparse model of attention and multi-label classification. JMLR.org (2016)

    Google Scholar 

  26. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis, pp. 1010–1019. IEEE Computer Society (2016)

    Google Scholar 

  27. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Zisserman, A.: The kinetics human action video dataset (2017)

    Google Scholar 

  28. Zhe, C., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR 2017 (2017)

    Google Scholar 

  29. Li, C., Zhong, Q., Xie, D., Pu, S.: Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation. In: Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-2018 (2018)

    Google Scholar 

  30. Yang, W., Zhang, J., Cai, J., Xu, Z.: Shallow graph convolutional network for skeleton-based action recognition. Sensors 21(2), 452 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Artificial Intelligence Program of Shanghai under Grant 2019-RGZN-01077.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Liu, S., Zhao, Y., Qin, X., Zeng, J., Zhang, X. (2021). Structure-Aware Multi-scale Hierarchical Graph Convolutional Network for Skeleton Action Recognition. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics