Nothing Special   »   [go: up one dir, main page]

Skip to main content

RST Discourse Parser for Russian: An Experimental Study of Deep Learning Models

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2020)

Abstract

This work presents the first fully-fledged discourse parser for Russian based on the Rhetorical Structure Theory of Mann and Thompson (1988). For the segmentation, discourse tree construction, and discourse relation classification we employ deep learning models. With the help of multiple word embedding techniques, the new state of the art for discourse segmentation of Russian texts is achieved. We found that the neural classifiers using contextual word representations outperform previously proposed feature-based models for discourse relation classification. By ensembling both methods, we are able to further improve the performance of the discourse relation classification achieving the new state of the art for Russian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://rusvectores.org/en/.

  2. 2.

    https://rstreebank.ru/dataset.

  3. 3.

    http://nlp.isa.ru/discourse_parser.

References

  1. Atutxa, A., Bengoetxea, K., de Ilarraza, A.D., Iruskieta, M.: Towards a top-down approach for an automatic discourse analysis for Basque: segmentation and central unit detection tool. PLOS ONE 14(9), 1–25 (2019)

    Article  Google Scholar 

  2. Bhatia, P., Ji, Y., Eisenstein, J.: Better document-level sentiment analysis from RST discourse parsing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2212–2218. Association for Computational Linguistics (2015)

    Google Scholar 

  3. Braud, C., Coavoux, M., Søgaard, A.: Cross-lingual RST discourse parsing. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 292–304 (2017)

    Google Scholar 

  4. Carlson, L., Marcu, D., Okurowski, M.E.: Building a discourse-tagged corpus in the framework of rhetorical structure theory. In: van Kuppevelt, J., Smith, R.W. (eds.) Current and New Directions in Discourse and Dialogue. Text, Speech and Language Technology, vol. 22, pp. 85–112. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-010-0019-2_5

    Chapter  Google Scholar 

  5. Chistova, E., Kobozeva, M., Pisarevskaya, D., Shelmanov, A., Smirnov, I., Toldova, S.: Towards the data-driven system for rhetorical parsing of Russian texts. In: Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019, pp. 82–87. Association for Computational Linguistics (2019)

    Google Scholar 

  6. Chistova, E., Shelmanov, A., Kobozeva, M., Pisarevskaya, D., Smirnov, I., Toldova, S.: Classification models for RST discourse parsing of texts in Russian. In: Computational Linguistics and Intellectual Technologies. Papers from the 2019 Annual International Conference “Dialogue”, vol. 18, pp. 163–176 (2019)

    Google Scholar 

  7. Desai, T., Dakle, P.P., Moldovan, D.: Joint learning of syntactic features helps discourse segmentation. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 1073–1080 (2020)

    Google Scholar 

  8. Feng, V.W., Hirst, G.: A linear-time bottom-up discourse parser with constraints and post-editing. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 511–521 (2014)

    Google Scholar 

  9. Guzmán, F., Joty, S., Màrquez, L., Nakov, P.: Using discourse structure improves machine translation evaluation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 687–698 (2014)

    Google Scholar 

  10. Hernault, H., Prendinger, H., Ishizuka, M., et al.: HILDA: a discourse parser using support vector machine classification. Dialogue Discourse 1(3), 1–33 (2010)

    Article  Google Scholar 

  11. Hirao, T., Yoshida, Y., Nishino, M., Yasuda, N., Nagata, M.: Single-document summarization as a tree knapsack problem. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1515–1520 (2013)

    Google Scholar 

  12. Hung, S.S., Huang, H.H., Chen, H.H.: A complete shift-reduce Chinese discourse parser with robust dynamic oracle. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 133–138 (2020)

    Google Scholar 

  13. Joty, S., Carenini, G., Ng, R.: A novel discriminative framework for sentence-level discourse analysis. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 904–915 (2012)

    Google Scholar 

  14. Kibrik, A.: The problem of non-discreteness and spoken discourse structure. Comput. Linguist. intellect. Technol. 1(14(21)), 225–233 (2015)

    Google Scholar 

  15. Kobayashi, N., Hirao, T., Kamigaito, H., Okumura, M., Nagata, M.: Top-down RST parsing utilizing granularity levels in documents. In: AAAI, pp. 8099–8106 (2020)

    Google Scholar 

  16. Liu, L., Lin, X., Joty, S., Han, S., Bing, L.: Hierarchical pointer net parsing. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1006–1016 (2019)

    Google Scholar 

  17. Liu, X., Ou, J., Song, Y., Jiang, X.: On the importance of word and sentence representation learning in implicit discourse relation classification. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 3830–3836. International Joint Conferences on Artificial Intelligence Organization (2020)

    Google Scholar 

  18. Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a functional theory of text organization. Text Interdisc. J. Study Discourse 8(3), 243–281 (1988)

    Article  Google Scholar 

  19. Marcu, D.: The Theory and Practice of Discourse Parsing and Summarization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  20. Morey, M., Muller, P., Asher, N.: How much progress have we made on RST discourse parsing? A replication study of recent results on the RST-DT. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1319–1324 (2017)

    Google Scholar 

  21. Muller, P., Braud, C., Morey, M.: ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents. In: NAACL HLT 2019 (2019)

    Google Scholar 

  22. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp. 2227–2237 (2018)

    Google Scholar 

  23. Pisarevskaya, D., et al.: Towards building a discourse-annotated corpus of Russian. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference Dialogue, p. 23 (2017)

    Google Scholar 

  24. Pisarevskaya, D., Galitsky, B.: An anatomy of a lie: discourse patterns in ultimate deception dataset. In: Proceedings of the International Conference on Computational Linguistics and Intellectual Technologies “Dialogue 2019” (2019)

    Google Scholar 

  25. Rogers, A., Romanov, A., Rumshisky, A., Volkova, S., Gronas, M., Gribov, A.: RuSentiment: an enriched sentiment analysis dataset for social media in Russian. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 755–763. Association for Computational Linguistics (2018)

    Google Scholar 

  26. Soricut, R., Marcu, D.: Sentence level discourse parsing using syntactic and lexical information. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 149–156 (2003)

    Google Scholar 

  27. Straka, M., Straková, J.: Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe. In: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pp. 88–99 (2017)

    Google Scholar 

  28. Subba, R., Di Eugenio, B.: An effective discourse parser that uses rich linguistic information. In: Proceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 566–574 (2009)

    Google Scholar 

  29. Wang, Y., Li, S., Wang, H.: A two-stage parsing method for text-level discourse analysis. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 184–188 (2017)

    Google Scholar 

  30. Wang, Y., Li, S., Yang, J.: Toward fast and accurate neural discourse segmentation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 962–967 (2018)

    Google Scholar 

  31. Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural language sentences. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 4144–4150 (2017)

    Google Scholar 

  32. Yu, N., Zhang, M., Fu, G.: Transition-based neural RST parsing with implicit syntax features. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 559–570 (2018)

    Google Scholar 

  33. Zeldes, A., Das, D., Maziero, E.G., Antonio, J., Iruskieta, M.: The DISRPT 2019 shared task on elementary discourse unit segmentation and connective detection. In: Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019, pp. 97–104. Association for Computational Linguistics (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 075-15-2020-799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Chistova .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 3.
figure 3

Example of segment underprediction (translation is in Fig. 5).

Fig. 4.
figure 4

Example of segment overprediction (translation is in Fig. 6).

Fig. 5.
figure 5

Translated example of segment underprediction.

Fig. 6.
figure 6

Translated example of segment overprediction.

Table 3. Incorrect segmentation examples (translated examples are in the Appendix Table 4).
Table 4. Translated incorrect segmentation examples.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chistova, E. et al. (2021). RST Discourse Parser for Russian: An Experimental Study of Deep Learning Models. In: van der Aalst, W.M.P., et al. Analysis of Images, Social Networks and Texts. AIST 2020. Lecture Notes in Computer Science(), vol 12602. Springer, Cham. https://doi.org/10.1007/978-3-030-72610-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72610-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72609-6

  • Online ISBN: 978-3-030-72610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics