Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Compliant Anonymisations of Quantified ABoxes w.r.t. \(\mathcal {EL} \) Policies

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

We adapt existing approaches for privacy-preserving publishing of linked data to a setting where the data are given as Description Logic (DL) ABoxes with possibly anonymised (formally: existentially quantified) individuals and the privacy policies are expressed using sets of concepts of the DL \(\mathcal {EL} \). We provide a chacterization of compliance of such ABoxes w.r.t. \(\mathcal {EL} \) policies, and show how optimal compliant anonymisations of ABoxes that are non-compliant can be computed. This work extends previous work on privacy-preserving ontology publishing, in which a very restricted form of ABoxes, called instance stores, had been considered, but restricts the attention to compliance. The approach developed here can easily be adapted to the problem of computing optimal repairs of quantified ABoxes.

Funded by the Deutsche Forschungsgemeinschaft (DFG) – 430150274.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    NP-hardness holds even if only unary and binary relation symbols are available.

  2. 2.

    Recall that we assume that policies are reduced, which implies that the elements of \(\mathsf{Atoms}(\mathcal {P})\) are reduced, and thus subsumption is a partial order on them.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co., Massachussetts (1995)

    MATH  Google Scholar 

  2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in \(\cal{EL}\) towards general TBoxes. In: Proceedings of KR 2012, pp. 568–572. AAAI Press (2012)

    Google Scholar 

  3. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing for \(\cal{EL} \) instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_21

    Chapter  Google Scholar 

  4. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Proceedings of KR 2018, pp. 319–328. AAAI Press (2018)

    Google Scholar 

  5. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL}\) policies (Extended Version). LTCS-Report 20–08, TU Dresden, Germany (2020)

    Google Scholar 

  6. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing safe anonymisations of quantified ABoxes w.r.t. \(\cal{EL}\) policies (Extended Version). LTCS-Report 20–09, TU Dresden, Germany (2020)

    Google Scholar 

  7. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proceedings of IJCAI 1999, pp. 96–101. Morgan Kaufmann (1999)

    Google Scholar 

  8. Baader, F., Morawska, B.: Unification in the description logic \(\cal{EL}\). Logical Methods Comput. Sci. 6(3) (2010). https://doi.org/10.2168/LMCS-6(3:17)2010

  9. Bonatti, P.A., Sauro, L.: A confidentiality model for ontologies. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 17–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_2

    Chapter  Google Scholar 

  10. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of STOC 1977, pp. 77–90. ACM (1977)

    Google Scholar 

  11. Cima, G., Lembo, D., Rosati, R., Savo, D.F.: Controlled query evaluation in description logics through instance indistinguishability. In: Proceedings of IJCAI 2020, pp. 1791–1797. ijcai.org (2020)

    Google Scholar 

  12. Grau, B.C., Kostylev, E.V.: Logical foundations of privacy-preserving publishing of linked data. In: Proceedings of AAAI 2016, pp. 943–949. AAAI Press (2016)

    Google Scholar 

  13. Grau, B.C., Kostylev, E.V.: Logical foundations of linked data anonymisation. J. Artif. Intell. Res. 64, 253–314 (2019)

    Article  MathSciNet  Google Scholar 

  14. Delanaux, R., Bonifati, A., Rousset, M.-C., Thion, R.: Query-based linked data anonymization. In: Vrandečić, D., Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.-A., Simperl, E. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 530–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_31

    Chapter  Google Scholar 

  15. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

    Google Scholar 

  16. Grau, B.C., Kharlamov, E., Kostylev, E.V., Zheleznyakov, D.: Controlled query evaluation for datalog and OWL 2 profile ontologies. In: Proceedings of IJCAI 2015, pp. 2883–2889. AAAI Press (2015)

    Google Scholar 

  17. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: FOCS 1995, pp. 453–462. IEEE Computer Society Press (1995)

    Google Scholar 

  18. Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44613-3

    Book  MATH  Google Scholar 

  19. Küsters, R., Molitor, R.: Approximating most specific concepts in description logics with existential restrictions. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 33–47. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45422-5_4

    Chapter  MATH  Google Scholar 

  20. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2004)

    Google Scholar 

  21. Lutz, C., Seylan, I., Wolter, F.: An automata-theoretic approach to uniform interpolation and approximation in the description logic \(\cal{EL}\). In: Proceedings of KR 2012, pp. 286–296. AAAI Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Baader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R. (2020). Computing Compliant Anonymisations of Quantified ABoxes w.r.t. \(\mathcal {EL} \) Policies. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics