Abstract
Weakly supervised object localization (WSOL) aims to localize the target object using only the image-level supervision. Recent methods encourage the model to activate feature maps over the entire object by dropping the most discriminative parts. However, they are likely to induce excessive extension to the backgrounds which leads to over-estimated localization. In this paper, we consider the background as an important cue that guides the feature activation to cover the sophisticated object region and propose contrastive attention loss. The loss promotes similarity between foreground and its dropped version, and, dissimilarity between the dropped version and background. Furthermore, we propose foreground consistency loss that penalizes earlier layers producing noisy attention regarding the later layer as a reference to provide them with a sense of backgroundness. It guides the early layers to activate on objects rather than locally distinctive backgrounds so that their attentions to be similar to the later layer. For better optimizing the above losses, we use the non-local attention blocks to replace channel-pooled attention leading to enhanced attention maps considering the spatial similarity. Last but not least, we propose to drop background regions in addition to the most discriminative region. Our method achieves state-of-the-art performance on CUB-200-2011 and ImageNet benchmark datasets regarding top-1 localization accuracy and MaxBoxAccV2, and we provide detailed analysis on our individual components. The code will be publicly available online for reproducibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, K., et al.: Towards accurate one-stage object detection with AP-loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5119–5127 (2019)
Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019)
Chen, X., Girshick, R., He, K., Dollár, P.: TensorMask: a foundation for dense object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2061–2069 (2019)
Robinson, A., Lawin, F.J., Danelljan, M., Khan, F.S., Felsberg, M.: Learning fast and robust target models for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7406–7415 (2020)
Li, Z., Zhou, F., Yang, L.: Fast single shot instance segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 257–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_16
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.S.: Adversarial complementary learning for weakly supervised object localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1325–1334 (2018)
Zhang, X., Wei, Y., Kang, G., Yang, Y., Huang, T.: Self-produced guidance for weakly-supervised object localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 610–625. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_37
Choe, J., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2219–2228 (2019)
Yang, S., Kim, Y., Kim, Y., Kim, C.: Combinational class activation maps for weakly supervised object localization. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 2941–2949 (2020)
Son, J., Kim, D., Lee, S., Kwak, S., Cho, M., Han, B.: Forget and diversify: regularized refinement for weakly supervised object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 632–648. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_39
Lee, P., Uh, Y., Byun, H.: Background suppression network for weakly-supervised temporal action localization. In: AAAI, pp. 11320–11327 (2020)
Kumar Singh, K., Jae Lee, Y.: Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3524–3533 (2017)
Wei, Y., Feng, J., Liang, X., Cheng, M.M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1576 (2017)
Hou, Q., Jiang, P., Wei, Y., Cheng, M.M.: Self-erasing network for integral object attention. In: Advances in Neural Information Processing Systems, pp. 549–559 (2018)
Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (2010)
Choe, J., Oh, S.J., Lee, S., Chun, S., Akata, Z., Shim, H.: Evaluating weakly supervised object localization methods right. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3133–3142 (2020)
Mai, J., Yang, M., Luo, W.: Erasing integrated learning: a simple yet effective approach for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8766–8775 (2020)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)
Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Baek, K., Lee, M., Shim, H.: PsyNet: self-supervised approach to object localization using point symmetric transformation. In: AAAI, pp. 10451–10459 (2020)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to imagenet? arXiv preprint arXiv:1902.10811 (2019)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6023–6032 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Acknowledgements
This work was supported by the National Research Foundation of Korea grant funded by Korean government (No. NRF-2019R1A2C2003760) and Artificial Intelligence Graduate School Program (YONSEI UNIVERSITY) under Grant 2020-0-01361. We thank Junsuk choe for his valuable discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ki, M., Uh, Y., Lee, W., Byun, H. (2021). In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-69538-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69537-8
Online ISBN: 978-3-030-69538-5
eBook Packages: Computer ScienceComputer Science (R0)